Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Ticks Tick Borne Dis ; 14(2): 102088, 2023 03.
Article in English | MEDLINE | ID: mdl-36436461

ABSTRACT

Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.


Subject(s)
Ixodidae , Tick-Borne Diseases , Ticks , Animals , United States , New York City , Georgia , Amblyomma
2.
Microbiol Mol Biol Rev ; 85(2)2021 05 19.
Article in English | MEDLINE | ID: mdl-33980587

ABSTRACT

The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.


Subject(s)
Borrelia burgdorferi/pathogenicity , Animals , Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Humans , Lyme Disease/microbiology , Plasminogen/metabolism , Proteolysis , Relapsing Fever/microbiology
3.
Clin Infect Dis ; 70(8): 1768-1773, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31620776

ABSTRACT

Lyme disease, caused by some Borrelia burgdorferi sensu lato, is the most common tick-borne illness in the Northern Hemisphere and the number of cases, and geographic spread, continue to grow. Previously identified B. burgdorferi proteins, lipid immunogens, and live mutants lead the design of canonical vaccines aimed at disrupting infection in the host. Discovery of the mechanism of action of the first vaccine catalyzed the development of new strategies to control Lyme disease that bypassed direct vaccination of the human host. Thus, novel prevention concepts center on proteins produced by B. burgdorferi during tick transit and on tick proteins that mediate feeding and pathogen transmission. A burgeoning area of research is tick immunity as it can unlock mechanistic pathways that could be targeted for disruption. Studies that shed light on the mammalian immune pathways engaged during tick-transmitted B. burgdorferi infection would further development of vaccination strategies against Lyme disease.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Ticks , Vaccines , Animals , Humans , Lyme Disease/prevention & control , Vaccination
4.
mBio ; 10(5)2019 09 17.
Article in English | MEDLINE | ID: mdl-31530679

ABSTRACT

A detailed first-hand account of the events leading up to the discovery of the Lyme disease agent has been lacking. Nearly 40 years have elapsed since the discovery of the organism that was named Borrelia burgdorferi There are thousands of articles in the scientific and medical literature on this organism and the disease that it causes. In the interval since the organism's discovery, however, misconceptions have arisen regarding not only the disease but the discovery itself. Accordingly, with this paper, we aim to fill in the details of this episode in medical history with a joint introduction, first-person accounts by the two authors, a summary of contemporaneous events, and concluding comments. The history of the discovery of the Lyme disease agent has threads originating in different places in the United States. Studies on Long Island, NY, provided the epidemiological thread of studies on rickettsial diseases and babesiosis, linking the latter with the cutaneous manifestation of Lyme disease, now known as erythema migrans. The Long Island thread intersected Montana's Rocky Mountain Laboratories thread of studies on a relapsing fever Borrelia and its cultivation and expertise in vector biology. This intersection made possible the discovery of the spirochete and its recovery from patients. This paper stresses that what may seem to have been an individual scientific discovery is actually the product of several threads coming together and is attributable to more people than appreciated.


Subject(s)
Borrelia burgdorferi/isolation & purification , Lyme Disease/microbiology , Animals , Borrelia burgdorferi/classification , Borrelia burgdorferi/pathogenicity , History, 20th Century , Humans , Ixodes/microbiology , Lyme Disease/history , United States
5.
mBio ; 10(5)2019 09 10.
Article in English | MEDLINE | ID: mdl-31506314

ABSTRACT

Tick-borne diseases have doubled in the last 12 years, and their geographic distribution has spread as well. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In the last few years, new agents have been discovered, and genetic changes have helped in the spread of pathogens and ticks. Polymicrobial infections, mostly in Ixodes scapularis, can complicate diagnostics and augment disease severity. Amblyomma americanum ticks have expanded their range, resulting in a dynamic and complex situation, possibly fueled by climate change. To document these changes, using molecular biology strategies for pathogen detection, an assessment of 12 microbes (9 pathogens and 3 symbionts) in three species of ticks was done in Suffolk County, New York. At least one agent was detected in 63% of I. scapularis ticksBorrelia burgdorferi was the most prevalent pathogen (57% in adults; 27% in nymphs), followed by Babesia microti (14% in adults; 15% in nymphs), Anaplasma phagocytophilum (14% in adults; 2% in nymphs), Borrelia miyamotoi (3% in adults), and Powassan virus (2% in adults). Polymicrobial infections were detected in 22% of I. scapularis ticks, with coinfections of B. burgdorferi and B. microti (9%) and of B. burgdorferi and A. phagocytophilum (7%). Three Ehrlichia species were detected in 4% of A. americanum ticks. The rickettsiae constituted the largest prokaryotic biomass of all the ticks tested and included Rickettsia amblyommatis, Rickettsia buchneri, and Rickettsia montanensis The high rates of polymicrobial infection in ticks present an opportunity to study the biological interrelationships of pathogens and their vectors.IMPORTANCE Tick-borne diseases have increased in prevalence in the United States and abroad. The reasons for these increases are multifactorial, but climate change is likely to be a major factor. One of the main features of the increase is the geographic expansion of tick vectors, notably Amblyomma americanum, which has brought new pathogens to new areas. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In addition, new pathogens that are cotransmitted by Ixodes scapularis have been discovered and have led to difficult diagnoses and to disease severity. Of these, Borrelia burgdorferi, the agent of Lyme disease, continues to be the most frequently transmitted pathogen. However, Babesia microti, Borrelia miyamotoi (another spirochete), Anaplasma phagocytophilum, and Powassan virus are frequent cotransmitted agents. Polymicrobial infection has important consequences for the diagnosis and management of tick-borne diseases.


Subject(s)
Ixodes/microbiology , Ixodes/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Anaplasma phagocytophilum , Animals , Babesia microti , Borrelia , Borrelia burgdorferi , Climate Change , Encephalitis Viruses, Tick-Borne , Humans , Ixodes/physiology , Lyme Disease , New York , Nymph/microbiology , Prevalence , Rickettsia , Tick-Borne Diseases/epidemiology
6.
BMC Public Health ; 19(1): 804, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234827

ABSTRACT

Malaria and Lyme disease were the largest vector-borne epidemics in recent US history. Malaria, a mosquito-borne disease with intense transmission, had higher morbidity and mortality, whereas Lyme and other tick-borne diseases are more persistent in the environment. The responses to these two epidemics were markedly different. The anti-malaria campaign involved large-scale public works eradicating the disease within two decades. In contrast, Lyme disease control and prevention focused on the individual, advocating personal protection and backyard control, with the disease incidence steeply increasing since 1980s. Control of Lyme and other tick-borne diseases will require a paradigm shift emphasizing measures to reduce tick and host (deer) populations and a substantial R&D effort. These steps will require changing the political climate, perceptions and opinions to generate support among governmental levels and the general public. Such support is essential for providing a real solution to one of the most intractable contemporary public health problems.


Subject(s)
Epidemics , Lyme Disease/epidemiology , Malaria/epidemiology , Public Health/trends , Animals , Disease Vectors , Humans , Mosquito Vectors , Ticks , United States/epidemiology
7.
Ann Neurol ; 85(1): 21-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30536421

ABSTRACT

Lyme borreliosis is the object of numerous misconceptions. In this review, we revisit the fundamental manifestations of neuroborreliosis (meningitis, cranial neuritis, and radiculoneuritis), as these have withstood the test of time. We also discuss other manifestations that are less frequent. Stroke, as a manifestation of Lyme neuroborreliosis, is considered in the context of other infections. The summary of the literature regarding clinical outcomes of neuroborreliosis leads to its controversies. We also include new information on pathogenesis and on the polymicrobial nature of tick-borne diseases. In this way, we update the review that we wrote in this journal in 1995. ANN NEUROL 2019;85:21-31.


Subject(s)
Borrelia burgdorferi/isolation & purification , Coinfection/epidemiology , Coinfection/therapy , Lyme Neuroborreliosis/epidemiology , Lyme Neuroborreliosis/therapy , Humans , Lyme Disease/epidemiology , Lyme Disease/therapy , Stroke/epidemiology , Stroke/therapy , Treatment Outcome
8.
mBio ; 9(4)2018 07 10.
Article in English | MEDLINE | ID: mdl-29991588

ABSTRACT

Borrelia burgdorferi HtrA (HtrABb) is a serine protease that targets damaged or improperly folded proteins. In our previous studies, HtrABb specifically degraded basic membrane protein BmpD, chemotaxis phosphatase CheX, and outer membrane protein P66. In addition, HtrABb degrades virulence factor BB0323 and components of the extracellular matrix fibronectin and aggrecan. A proteomics-based analysis (two-dimensional difference gel electrophoresis [2-D DIGE], liquid chromatography-mass spectrometry [LC-MS]) of an HtrABb-overexpressing strain of B. burgdorferi (A3HtrAOE) revealed that protein levels of P66 were reduced in comparison to wild-type B. burgdorferi, confirming its status as an HtrABb substrate. Hbb, a P66-DNA-binding transcription factor, was specifically degraded by HtrABb, providing supportive evidence for a role for both in the regulation of P66. A3HtrAOE exhibited reduced motility in swarm assays, a possible link between overabundance of HtrABb and its enzymatic specificity for P66. However, the ΔP66 strain did not have reduced motility in the swarm assays, negating a role for this protein. The proteomics analyses also identified three enzymes of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycerol-3-phosphate dehydrogenase (GPDH), and glycerol kinase (GK), and one enzyme involved in carbohydrate metabolism, diphosphate-fructose-6-phosphate 1-phosphotransferase, which were reduced in A3HtrAOE. Consistent with its reduced protein levels of these glycolytic enzymes, A3HtrAOE was also deficient in production of pyruvate. We propose a model for a role for HtrABb in contributing to a decrease in metabolic activity of B. burgdorferiIMPORTANCE Being a vector-borne bacterium, B. burgdorferi must remodel its protein content as it transfers from tick to mammal. Proteolysis is a mechanism whereby remodeling can be accomplished. HtrABb degrades a number of proteins whose disappearance may help in preparing this organism for a stage of low metabolic activity.


Subject(s)
Borrelia burgdorferi/enzymology , Borrelia burgdorferi/physiology , Locomotion , Pyruvic Acid/metabolism , Serine Proteases/metabolism , Borrelia burgdorferi/genetics , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Gene Expression , Mass Spectrometry , Proteome/analysis , Serine Proteases/genetics
9.
Mol Microbiol ; 108(1): 63-76, 2018 04.
Article in English | MEDLINE | ID: mdl-29377398

ABSTRACT

Lipid rafts are microdomains present in the membrane of eukaryotic organisms and bacterial pathogens. They are characterized by having tightly packed lipids and a subset of specific proteins. Lipid rafts are associated with a variety of important biological processes including signaling and lateral sorting of proteins. To determine whether lipid rafts exist in the inner membrane of Borrelia burgdorferi, we separated the inner and outer membranes and analyzed the lipid constituents present in each membrane fraction. We found that both the inner and outer membranes have cholesterol and cholesterol glycolipids. Fluorescence anisotropy and FRET showed that lipids from both membranes can form rafts but have different abilities to do so. The analysis of the biochemically defined proteome of lipid rafts from the inner membrane revealed a diverse set of proteins, different from those associated with the outer membrane, with functions in protein trafficking, chemotaxis and signaling.


Subject(s)
Borrelia burgdorferi/ultrastructure , Intracellular Membranes/ultrastructure , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Borrelia burgdorferi/physiology , Chemotaxis , Cholesterol/analogs & derivatives , Cholesterol/chemistry , Cholesterol/metabolism , Fluorescence Polarization , Fluorescence Resonance Energy Transfer , Glycolipids/chemistry , Glycolipids/metabolism , Intracellular Membranes/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Protein Transport , Proteome
10.
Methods Mol Biol ; 1690: 69-82, 2018.
Article in English | MEDLINE | ID: mdl-29032537

ABSTRACT

Lipid rafts are membrane microdomains that are involved in cellular processes such as protein trafficking and signaling processes, and which play a fundamental role in membrane fluidity and budding. The lipid composition of the membrane and the biochemical characteristics of the lipids found within rafts define the ability of cells to form microdomains and compartmentalize the membrane. In this chapter, we describe the biophysical, biochemical, and molecular approaches used to define and characterize lipid rafts in the Lyme disease agent, Borrelia burgdorferi.


Subject(s)
Borrelia burgdorferi/chemistry , Lipids/analysis , Lyme Disease/microbiology , Membrane Microdomains/chemistry , Fluorescence Polarization/methods , Fluorescence Resonance Energy Transfer/methods , Humans , Immunohistochemistry/methods , Lipids/isolation & purification , Magnetic Resonance Spectroscopy/methods , Membrane Lipids/analysis , Membrane Lipids/isolation & purification , Negative Staining/methods
11.
Biophys J ; 111(12): 2666-2675, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-28002743

ABSTRACT

Co-existing disordered and ordered (raft) membrane domains exist in Borrelia burgdorferi, the causative agent of Lyme disease. However, although B. burgdorferi contains cholesterol lipids, it lacks sphingolipids-a crucial component of rafts in eukaryotes. To define the principles of ordered lipid domain formation in Borrelia, the domain forming properties of vesicles composed of its three major lipids, acylated cholesteryl galactoside (ACGal), monogalactosyl diacyglycerol (MGalD), and phosphatidylcholine (PC) and/or their mixtures were studied. Anisotropy and fluorescence resonance energy transfer measurements were used to assay membrane order and ordered-domain formation. ACGal had the highest potential to form ordered domains. Interestingly, mixtures of ACGal with B. burgdorferi PC formed ordered domains more readily than mixtures of ACGal with MGalD. This appears to reflect the relatively high level of saturation observed for B. burgdorferi PC, as vesicles containing ACGal and PC, but in which the unsaturated lipid dioleoyl PC was substituted for Borrelia PC, failed to form ordered domains. In addition, the properties of ACGal were compared to those of cholesterol. Depending on what other lipids were present, ordered-domain formation in the presence of ACGal was greater than or equal to that in the presence of cholesterol. Giant unilamellar vesicles formed from ACGal-containing mixtures showed rounded domain shapes similar to those in analogous vesicles containing cholesterol, indicative of liquid-ordered state rather than solid-like gel-state domain formation. Over all, principles of ordered-domain formation in B. burgdorferi appear to be very similar to those in eukaryotes, with saturated PC taking the place of sphingolipids, but with ACGal being the main lipid component inducing ordered-domain formation.


Subject(s)
Borrelia burgdorferi/cytology , Lipid Metabolism , Membrane Microdomains/metabolism , Animals , Cholesterol/metabolism , Galactosides/chemistry , Galactosides/metabolism , Swine
12.
Genome Biol Evol ; 8(5): 1351-60, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27190204

ABSTRACT

The lone star tick, Amblyomma americanum, is an important disease vector and the most frequent tick found attached to humans in the eastern United States. The lone star tick has recently experienced a rapid range expansion into the Northeast and Midwest, but despite this emerging infectious threat to wildlife, livestock, and human health, little is known about the genetic causes and consequences of the geographic expansion. In the first population genomic analysis of any tick species, we characterize the genetic diversity and population structure of A. americanum across its current geographic range, which has recently expanded. Using a high-throughput genotyping-by-sequencing approach, we discovered more than 8,000 single nucleotide polymorphisms in 90 ticks from five locations. Surprisingly, newly established populations in New York (NY) and Oklahoma (OK) are as diverse as historic range populations in North and South Carolina. However, substantial population structure occurs among regions, such that new populations in NY and OK are genetically distinct from historic range populations and from one another. Ticks from a laboratory colony are genetically distinct from wild populations, underscoring the need to account for natural variation when conducting transmission or immunological studies, many of which utilize laboratory-reared ticks. An FST-outlier analysis comparing a recently established population to a long-standing population detected numerous outlier sites, compatible with positive and balancing selection, highlighting the potential for adaptation during the range expansion. This study provides a framework for applying high-throughput DNA sequencing technologies for future investigations of ticks, which are common vectors of diseases.


Subject(s)
Genetics, Population , Genome, Insect , Ticks/genetics , Animals , Disease Vectors , Genotype , High-Throughput Nucleotide Sequencing , Humans , Polymorphism, Single Nucleotide , Ticks/pathogenicity , United States
13.
Mol Microbiol ; 99(1): 135-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26370492

ABSTRACT

In prokaryotes, members of the High Temperature Requirement A (HtrA) family of serine proteases function in the periplasm to degrade damaged or improperly folded membrane proteins. Borrelia burgdorferi, the agent of Lyme disease, codes for a single HtrA homolog. Two-dimensional electrophoresis analysis of B. burgdorferi B31A3 and a strain that overexpresses HtrA (A3HtrAOE) identified a downregulated protein in A3HtrAOE with a mass, pI and MALDI-TOF spectrum consistent with outer membrane protein p66. P66 and HtrA from cellular lysates partitioned into detergent-resistant membranes, which contain cholesterol-glycolipid-rich membrane regions known as lipid rafts, suggesting that HtrA and p66 may reside together in lipid rafts also. This agrees with previous work from our laboratory, which showed that HtrA and p66 are constituents of B. burgdorferi outer membrane vesicles. HtrA degraded p66 in vitro and A3HtrAOE expressed reduced levels of p66 in vivo. Fluorescence confocal microscopy revealed that HtrA and p66 colocalize in the membrane. The association of HtrA and p66 establishes that they could interact efficiently and their protease/substrate relationship provides functional relevance to this interaction. A3HtrAOE also showed reduced levels of p66 transcript in comparison with wild-type B31A3, indicating that HtrA-mediated regulation of p66 may occur at multiple levels.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Borrelia burgdorferi/enzymology , Borrelia burgdorferi/metabolism , Porins/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Microscopy, Confocal , Microscopy, Fluorescence
14.
Proteomics ; 15(21): 3662-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26256460

ABSTRACT

Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).


Subject(s)
Antigens, Bacterial/analysis , Antigens, Surface/analysis , Bacterial Outer Membrane Proteins/analysis , Bacterial Vaccines/analysis , Borrelia burgdorferi/chemistry , Cholera Toxin/analysis , Lipoproteins/analysis , Membrane Microdomains/chemistry , Proteome/analysis , Amino Acid Sequence , Chromatography, Liquid , Detergents/chemistry , Lyme Disease/microbiology , Molecular Sequence Data , Sequence Alignment , Tandem Mass Spectrometry
15.
Proc Natl Acad Sci U S A ; 112(17): 5491-6, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870274

ABSTRACT

The Lyme disease (Borrelia burgdorferi) and relapsing-fever (Borrelia hispanica) agents have distinct infection courses, but both require cholesterol for growth. They acquire cholesterol from the environment and process it to form cholesterol glycolipids that are incorporated onto their membranes. To determine whether higher levels of serum cholesterol could enhance the organ burdens of B. burgdorferi and the spirochetemia of B. hispanica in laboratory mice, apolipoprotein E (apoE)-deficient and low-density lipoprotein receptor (LDLR)-deficient mice that produce large amounts of serum cholesterol were infected with both spirochetes. Both apoE- and LDLR-deficient mice infected with B. burgdorferi had an increased number of spirochetes in the joints and inflamed ankles compared with the infected wild-type (WT) mice, suggesting that mutations in cholesterol transport that result in high serum cholesterol levels can affect the pathogenicity of B. burgdorferi. In contrast, elevated serum cholesterol did not lead to an increase in the spirochetemia of B. hispanica. In the LDLR-deficient mice, the course of infection was indistinguishable from the WT mice. However, infection of apoE-deficient mice with B. hispanica resulted in a longer spirochetemia and increased mortality. Together, these results argue for the apoE deficiency, and not hypercholesterolemia, as the cause for the increased severity with B. hispanica. Serum hyperlipidemias are common human diseases that could be a risk factor for increased severity in Lyme disease.


Subject(s)
Apolipoproteins E/deficiency , Borrelia burgdorferi/metabolism , Cholesterol/blood , Hypercholesterolemia , Lyme Disease , Relapsing Fever , Animals , Disease Models, Animal , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Lyme Disease/blood , Lyme Disease/genetics , Lyme Disease/pathology , Mice , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Relapsing Fever/blood , Relapsing Fever/genetics , Relapsing Fever/pathology , Risk Factors
16.
Microbiol Spectr ; 3(6)2015 12.
Article in English | MEDLINE | ID: mdl-27337282

ABSTRACT

Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Host-Pathogen Interactions , Lipid Metabolism , Animals , Bacteria/genetics , Bacteria/growth & development , Bacterial Infections/microbiology , Humans
17.
mBio ; 5(2): e00899-14, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24618252

ABSTRACT

Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in lipid rafts, little is known about their structural contribution to these domains. Borrelia burgdorferi, the agent of Lyme disease, has lipid rafts, which are novel structures in bacteria. Here, we have shown that the raft-associated lipoproteins OspA and OspB selectively contribute to lipid rafts. A similar but non-raft-associated lipoprotein, OspC, cannot substitute for the role of OspA and OspB. In this study, we have demonstrated that lipoprotein association with lipid rafts is selective, further suggesting a functional adaptation to different stages of the spirochete life cycle. The results of this study are of broader importance and can serve as a model for other bacteria that also possess cholesterol in their membranes and, therefore, may share lipid raft traits with Borrelia.


Subject(s)
Antigens, Bacterial/analysis , Antigens, Surface/analysis , Bacterial Outer Membrane Proteins/analysis , Bacterial Vaccines/analysis , Borrelia burgdorferi/chemistry , Lipoproteins/analysis , Membrane Microdomains/chemistry , Antigens, Bacterial/genetics , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/genetics , Detergents/metabolism , Gene Deletion , Genetic Complementation Test , Humans , Lipoproteins/genetics , Microscopy, Electron, Transmission
18.
PLoS Pathog ; 9(5): e1003353, 2013.
Article in English | MEDLINE | ID: mdl-23696733

ABSTRACT

Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET). Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.


Subject(s)
Borrelia burgdorferi , Cholesterol , Membrane Microdomains , Animals , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Detergents/chemistry , Humans , Lyme Disease/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism
19.
Mol Microbiol ; 88(3): 619-33, 2013 May.
Article in English | MEDLINE | ID: mdl-23565798

ABSTRACT

Borrelia burgdorferi, the spirochaetal agent of Lyme disease, codes for a single HtrA protein, HtrABb (BB0104) that is homologous to DegP of Escherichia coli (41% amino acid identity). HtrABb shows physical and biochemical similarities to DegP in that it has the trimer as its fundamental unit and can degrade casein via its catalytic serine. Recombinant HtrABb exhibits proteolytic activity in vitro, while a mutant (HtrABbS198A) does not. However, HtrABb and DegP have some important differences as well. Native HtrABb occurs in both membrane-bound and soluble forms. Despite its homology to DegP, HtrABb could not complement an E. coli DegP deletion mutant. Late stage Lyme disease patients, as well as infected mice and rabbits developed a robust antibody response to HtrABb, indicating that it is a B-cell antigen. In co-immunoprecipitation studies, a number of potential binding partners for HtrABb were identified, as well as two specific proteolytic substrates, basic membrane protein D (BmpD/BB0385) and chemotaxis signal transduction phosphatase CheX (BB0671). HtrABb may function in regulating outer membrane lipoproteins and in modulating the chemotactic response of B. burgdorferi.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/genetics , Phosphoric Monoester Hydrolases/metabolism , Serine Endopeptidases/metabolism , Animals , Bacterial Proteins/genetics , Borrelia burgdorferi/growth & development , Chemotaxis/genetics , Escherichia coli/genetics , Gene Deletion , Genetic Complementation Test , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Immunoprecipitation , Lyme Disease/microbiology , Mice , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Phosphoric Monoester Hydrolases/genetics , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine Endopeptidases/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...