Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 32(32): 3782-8, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-22986531

ABSTRACT

The gut-specific homeotic transcription factor Cdx2 is a crucial regulator of intestinal development and homeostasis, which is downregulated in colorectal cancers (CRC) and exhibits a tumor suppressor function in the colon. We have previously established that several endodermal transcription factors, including HNF4α and GATA6, are involved in Cdx2 regulation in the normal gut. Here we have studied the role of HNF4α in the mechanism of deregulation of Cdx2 in colon cancers. Crossing Apc(Δ14/+) mice prone to spontaneous intestinal tumor development with pCdx2-9LacZ transgenic mice containing the LacZ reporter under the control of the 9.3-kb Cdx2 promoter showed that this promoter segment contains sequences recapitulating the decrease of Cdx2 expression in intestinal cancers. Immunohistochemistry revealed that HNF4α, unlike GATA6, exhibited a similar decrease to Cdx2 in genetic (Apc(min/+) and Apc(Δ14/+)) and chemically induced (Azoxymethane (AOM) treatment) models of intestinal tumors in mice. HNF4α and Cdx2 also exhibited a comparable deregulated pattern in human CRC. Correlated patterns were observed between HNF4α and Cdx2 in several experimental models of human colon cancer cell lines: xenografts in nude mice, wound healing and glucose starvation. Furthermore, Cdx2 decreased by knocking down HNF4α in human colon cancer cells using siRNA and in the colon of mice conditionally knocked out for the Hnf4α gene in the adult intestine (Hnf4α(f/f);VilCre(ERT2) mice). Finally, the conditionally knocked out mice Hnf4α(f/f);VilCre(ERT2) treated with the carcinogen AOM developed colorectal tumors earlier than wild-type mice, as previously reported for mice with a reduced Cdx2 expression. In conclusion, this study provides evidence that the downregulation of HNF4α is an important determinant of the reduced expression of the Cdx2 tumor suppressor gene in intestinal cancers. Consistently, similar to Cdx2, HNF4α exerts a tumor suppressor function in the colon in that its loss of function facilitates tumor progression.


Subject(s)
Colonic Neoplasms/etiology , Hepatocyte Nuclear Factor 4/physiology , Homeodomain Proteins/physiology , Transcription Factors/physiology , Animals , CDX2 Transcription Factor , Colonic Neoplasms/genetics , GATA6 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Hepatocyte Nuclear Factor 4/genetics , Homeodomain Proteins/genetics , Mice , Promoter Regions, Genetic , Transcription Factors/genetics
2.
J Bacteriol ; 191(23): 7225-33, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19749045

ABSTRACT

Zoonotic infections are a growing threat to global health. Chlamydia pneumoniae is a major human pathogen that is widespread in human populations, causing acute respiratory disease, and has been associated with chronic disease. C. pneumoniae was first identified solely in human populations; however, its host range now includes other mammals, marsupials, amphibians, and reptiles. Australian koalas (Phascolarctos cinereus) are widely infected with two species of Chlamydia, C. pecorum and C. pneumoniae. Transmission of C. pneumoniae between animals and humans has not been reported; however, two other chlamydial species, C. psittaci and C. abortus, are known zoonotic pathogens. We have sequenced the 1,241,024-bp chromosome and a 7.5-kb cryptic chlamydial plasmid of the koala strain of C. pneumoniae (LPCoLN) using the whole-genome shotgun method. Comparative genomic analysis, including pseudogene and single-nucleotide polymorphism (SNP) distribution, and phylogenetic analysis of conserved genes and SNPs against the human isolates of C. pneumoniae show that the LPCoLN isolate is basal to human isolates. Thus, we propose based on compelling genomic and phylogenetic evidence that humans were originally infected zoonotically by an animal isolate(s) of C. pneumoniae which adapted to humans primarily through the processes of gene decay and plasmid loss, to the point where the animal reservoir is no longer required for transmission.


Subject(s)
Chlamydia Infections/pathology , Chlamydophila pneumoniae/genetics , Animals , Chlamydia Infections/genetics , Chlamydophila pneumoniae/classification , Genome, Bacterial/genetics , Humans , Molecular Sequence Data , Phascolarctidae/microbiology , Phylogeny , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...