Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3697, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355935

ABSTRACT

Lighter-than-air (LTA) aerial vehicles such as airships and aerostats can be found in various strategic and commercial applications, primarily due to their capability to hover and stealth. The mathematical model of these vehicles helps in understanding their complex dynamics and designing and developing proper stabilisation systems for them. Stability derivatives have been used for developing mathematical models for heavier-than-air aerial vehicles since their introduction. This paper presents a methodology to develop a mathematical model of an aerostat based on stability derivatives. One of the major contributions of this study is the estimation of aerostat's added mass terms expressed as longitudinal stability derivatives due to acceleration of the longitudinal motion variables. A longitudinally decoupled linear mathematical model of a single-tethered aerostat using stability derivatives is investigated in this study. A computational fluid dynamics (CFD)-based analysis of the 3D model of the vehicle is used to obtain the stability derivatives. The methodology presented considers the aerostat and tether models separately before coupling them to create the full model. The stability derivative analysis is carried out using ANSYS Fluent, and the coupled tethered aerostat model is investigated using MATLAB 2020. The negative pitch angle of the aerostat is caused by the selection of the pitching centre as the aerostat centre of volume instead of the tether confluence point. The tension force on the tether, which is proportional to the wind velocity, and aerostat velocity components are found to be stabilised within 200-400 s.

2.
Front Microbiol ; 9: 2689, 2018.
Article in English | MEDLINE | ID: mdl-30505294

ABSTRACT

In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.

SELECTION OF CITATIONS
SEARCH DETAIL
...