Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944559

ABSTRACT

OBJECTIVE: To assess the influence of calcination process on the properties of minimally processed recycled 3Y-TZP, and to compare it with its commercial counterpart. METHODS: Non-milled 3Y-TZP waste was collected, fragmented and ball-milled to a granulometric < 5 µm. Half of the recycled powder was calcined at 900 °C. Recycled 3Y-TZP disks were uniaxially pressed and sintered to create two recycled groups: 1) Calcined and 2) Non-calcined to be compared with a commercial CAD/CAM milled 3Y-TZP. The microstructure of experimental groups was assessed through density (n = 6), scanning electron microscopy (n = 3) and energy-dispersive X-ray spectroscopy (n = 3); and the crystalline content was evaluated through X-ray diffraction (XRD) (n = 3). Optical and mechanical properties were investigated through reflectance tests (n = 10), and Vickers hardness, fracture toughness (n = 5), and biaxial flexural strength tests (n = 16), respectively. Fractographic analysis was performed to identify fracture origin and crack propagation. Statistical analyses were performed through ANOVA followed by Tukey´s test, and by Weibull statistics. RESULTS: Particle size distribution of recycled powder revealed an average diameter of ∼1.60 µm. The relative density of all experimental groups was > 98.15 % and XRD analysis exhibited a predominance of tetragonal-phase in both recycled groups, which were similar to the crystallographic pattern of the control group. Cross-section micrographs presented flaws on the non-calcined group, and a more homogeneous microstructure for the calcined and commercial groups. Commercial samples showed lower contrast-ratio and higher translucency-parameter than the recycled groups, where non-calcined presented higher translucency-parameter and lower contrast-ratio than its calcined counterpart. The commercial group presented higher fracture toughness and characteristic strength than the recycled groups. Moreover, the calcined group exhibited higher hardness, characteristic strength, and probability of survival at higher loads than the non-calcined group. Fractographic analysis depicted the presence of microstructural flaws in the non-calcined group, which may have acted as stress-raisers and led to failures at lower flexural strengths values. SIGNIFICANCE: The calcination process improved the microstructure, optical, and mechanical properties of the recycled 3Y-TZP.

2.
Med Oral Patol Oral Cir Bucal ; 29(1): e103-e110, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37992144

ABSTRACT

BACKGROUND: To evaluate bone regenerative capacity of cryoprotected corticocancellous allogeneic bone graft performed in type II and III post-extraction sockets for ridge preservation after twelve weeks in-vivo. MATERIAL AND METHODS: Twenty-seven type II or III bony-walled extraction sockets (mandible and maxilla) were selected for this study. Following atraumatic tooth-extraction a cryoprotected corticocancellous allogeneic bone graft material and a resorbable porcine-derived collagen membrane were used for ridge preservation. During re-entry surgery at approximately 12 weeks, bone core biopsies were obtained using a 3.2 mm trephine drill and samples were histologically processed and subjected to qualitative and quantitative histomorphometric analysis. Quantitative data was analyzed using a general linear mixed model with results presented as mean values with the corresponding 95% confidence interval values. RESULTS: Healing without incident and ridge preservation allowed for the placement of dental implants after 12 weeks in 25 out of the 27 treated socket sites. Analyses yielded an average of ~21.0±7% of old/native bone, ~17±5.5% of newly regenerated bone (total of ~38±12.8% for all bone), 0.23±0.14% of new bone presenting with nucleating sites within the matrix, ~52±5.12% of soft tissue, and 3.6±2.09% of damaged bone. The average regenerated bone was statistically analogous to that of old/native bone (p=0.355). Furthermore, an atypical histological pattern of bone regeneration was observed, with newly formed bone exhibiting "infiltration-like" behavior and with new bone nucleating sites observed within the demineralized bone matrix. CONCLUSIONS: Cryoprotected corticocancellous allogeneic bone-graft demonstrated osteoconductive, osteoinductive, and osteogenic properties, yielding unique healing patterns which does warrant further investigation.


Subject(s)
Alveolar Bone Loss , Alveolar Ridge Augmentation , Hematopoietic Stem Cell Transplantation , Animals , Swine , Tooth Socket/surgery , Alveolar Ridge Augmentation/methods , Bone Regeneration , Wound Healing , Tooth Extraction , Bone Transplantation/methods , Alveolar Bone Loss/surgery
3.
Med Oral Patol Oral Cir Bucal ; 28(1): e48-e55, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36173722

ABSTRACT

BACKGROUND: Successful osseointegration of endosteal dental implants has been attributed to implant design, including the macro-, micro- and nano- geometric properties. Based on current literature pertaining to implant design, the resultant cellular and bone healing response is unknown when the thread thickness of the implants is increased, resulting in an increased contact area in implants designed with healing chambers. The aim of this study was to evaluate the effect of two implant designs with different thread profiles on the osseointegration parameters and implant stability at 3- and 6-weeks in vivo using a well-established preclinical dog model. MATERIAL AND METHODS: A total of 48 type V Ti alloy implants were divided in two groups according to their thread design (D1= +0.1x/mm and D2= +0.15x/mm) and placed in an interpolated fashion into the radii of six beagles. Insertion torque was measured at time of placement, radii were extracted for histological processing following 3- and 6-week healing intervals. Histologic and histomorphometric analyses were performed in terms of bone to implant contact (%BIC) and bone area fraction occupancy within implant threads (%BAFO). Statistical analyses were performed through a linear mixed model with fixed factors of time and implant thread design. RESULTS: Surface roughness analysis demonstrated no significant differences in Sa and Sq between D1 and D2 implant designs, which confirmed that both implant designs were homogenous except for their respective thread profiles. For insertion torque, statistically significant lower values were recorded for D1 in comparison to D2 (59.6 ± 11.1 and 78.9 ± 10.1 N⋅cm, respectively). Furthermore, there were no significant differences with respect to histological analysis and histomorphometric parameters, between D1 and D2 at both time points. CONCLUSIONS: Both thread profiles presented equivalent potential to successfully osseointegrate in the osteotomies, with D2 yielding higher mechanical retention upon placement without detrimental bone resorption.


Subject(s)
Dental Implants , Osseointegration , Dogs , Animals , Torque , Dental Prosthesis Design , Dental Implantation, Endosseous/methods , Surface Properties
4.
Med Oral Patol Oral Cir Bucal ; 27(2): e174-e180, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35218646

ABSTRACT

BACKGROUND: The aim of the present study was to evaluate the effect of different concentrations of growth hormone (GH) on endosteal implant's surface at the early stages of osseointegration. MATERIAL AND METHODS: Sixty tapered acid-etched titanium implants were divided into four groups: i) Collagen, used as a control group; and three experimental groups, where after collagen coating, GH was administered directly to the surface in varying concentrations: ii) 0.265 mg, iii) 0.53 mg, and iv) 1 mg. Implants were placed in an interpolated fashion in the anterior flange of C3, C4 or C5 of 15 sheep with minimum distance of 6 mm between implants. After 3-, 6- and 12-weeks of healing samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). RESULTS: Statistical analysis as a function of time in vivo and coating resulted in no significant differences for BIC and BAFO at any evaluation time point. Histological evaluation demonstrated similar osseointegration features for all groups with woven bone formation at 3 weeks and progressive replacement of woven for lamellar bone in close contact with the implant surface and within the implant's threads. CONCLUSIONS: A single local application of growth hormone to the surface of titanium implants did not yield improved implant osseointegration independent of healing time.


Subject(s)
Dental Implants , Osseointegration , Animals , Growth Hormone/pharmacology , Sheep , Surface Properties , Titanium/pharmacology
5.
J Mech Behav Biomed Mater ; 123: 104690, 2021 11.
Article in English | MEDLINE | ID: mdl-34385065

ABSTRACT

OBJECTIVE: To characterize the effects of aging on the nanomechanical properties and 3D surface topographical parameters of an experimental Zirconia Toughened Alumina (ZTA) composite compared to its respective individual counterpart materials. METHODS: Disk-shaped specimens comprised of three material groups were processed: 1) ZTA 70/30 (70% alumina reinforced with 30% second-generation 3Y-TZP); 2) Zpex (Second-generation 3Y-TZP), and; 3) Al2O3 (High purity Alumina) (n = 10/material, 12 × 1 mm). After synthesis, ceramic powders were pressed, the green-body samples were sintered and polished. Nanoindentation testing was performed to record elastic modulus (E) and hardness (H). Interferometry was utilized to assess 3D surface roughness parameters (Sa, Sq), while X-ray diffraction (XRD) and scanning electron microscope (SEM) assessed the crystalline content and microstructure. All tests were performed before and after simulated aging (134°C, 2.2 bar, 20 h). Statistical analyses were performed using linear mixed-model and least square difference pos-hoc tests (α = 5%). RESULTS: XRD spectra indicated increase of monoclinic peaks for Zpex (~18%) relative to ZTA 70/30 (~2.5%) after aging. Additionally, aging did not affect the surface roughness parameters of ZTA 70/30 and Al2O3, although a significant increase in Sa was recorded for Zpex following aging (~90 nm) (p < 0.001). Al2O3 yielded the highest H and E values (H:21 GPa, E: 254 GPa), followed by ZTA 70/30 (H: 13 GPa, E: 214 GPa) and Zpex (H:11 GPa, E: 167 GPa), all significantly different (p < 0.03). CONCLUSION: ZTA 70/30 and Al2O3 presented high hydrothermal stability with respect to all evaluated variables, where artificial aging significantly increased the monoclinic content and surface roughness of Zpex.


Subject(s)
Aluminum Oxide , Yttrium , Ceramics , Dental Materials , Materials Testing , Surface Properties , Zirconium
6.
Dent Mater ; 36(12): e365-e374, 2020 12.
Article in English | MEDLINE | ID: mdl-32943230

ABSTRACT

OBJECTIVE: To evaluate the effect of aging on the microstructural, mechanical, and optical properties of an experimental zirconia-toughened alumina composite with 80%Al2O3 and 20%ZrO2 (ZTA Zpex) compared to a translucent zirconia (Zpex) and Alumina. METHODS: Disc-shaped specimens were obtained by uniaxial and isostatic pressing the synthesized powders (n = 70/material). After sintering and polishing, half of the specimens underwent aging (20 h, 134 °C, 2.2 bar). Crystalline content and microstructure were evaluated using X-ray diffraction and scanning electron microscopy, respectively. Specimens underwent biaxial flexural strength testing to determine the characteristic stress, Weibull modulus, and reliability. Translucency parameter (TP) and Contrast ratio (CR) were calculated to characterize optical properties. RESULTS: ZTA Zpex demonstrated a compact surface with a uniform dispersion of zirconia particles within the alumina matrix, and typical alumina and zirconia crystalline content. ZTA Zpex and alumina exhibited higher CR and lower TP than Zpex. ZTA Zpex and Zpex showed significantly higher characteristic stress relative to alumina. While aging did not affect optical and mechanical properties of ZTA Zpex and alumina, Zpex demonstrated a significant increase in translucency, as well as a in characteristic stress. Alumina reliability was significantly lower than others at 300 MPa, ZTA Zpex and Zpex reliability decreased at 800 MPa, except for aged Zpex. SIGNIFICANCE: While aging did not affect the mechanical nor the optical properties of ZTA Zpex and alumina, it did alter both properties of Zpex. The results encourage further investigations to engineer ZTA as a framework material for long span fixed dental prostheses specially where darkened substrates, such as titanium implant abutments or endodontically treated teeth, demand masking.


Subject(s)
Aluminum Oxide , Zirconium , Ceramics , Dental Materials , Materials Testing , Reproducibility of Results , Surface Properties
7.
J Mech Behav Biomed Mater ; 104: 103659, 2020 04.
Article in English | MEDLINE | ID: mdl-32174417

ABSTRACT

PURPOSE: To synthesize a zirconia-toughened alumina (ZTA) composite with 85% alumina matrix reinforced by 15% zirconia and to characterize its optical and mechanical properties before and after artificial aging, to be compared with a conventional dental zirconia (3Y-TZP). MATERIAL AND METHODS: After syntheses, ZTA and 3Y-TZP powders were uniaxially and isostatically pressed. Green-body samples were sintered and polished to obtain 80 disc-shaped specimens per group (12 × 1 mm, ISO 6872:2015). The crystalline content and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Optical properties were determined by the calculation of contrast ratio (CR) and translucency parameter (TP) using reflectance data. Mechanical properties were assessed by Vickers hardness, fracture toughness and biaxial flexural strength test (BFS). All analyses were conducted before and after artificial aging (20h, 134 °C, 0.22 MPa). Optical parameters and microhardness differences were evaluated through repeated-measures analysis of variance (p < 0.05). BFS data were analyzed using Weibull statistics (95% CI). RESULTS: The synthesis of the experimental ZTA composite was successful, with 98% of theoretical density, as shown in the SEM images. XRD patterns revealed typical zirconia and alumina crystalline phases. ZTA optical properties parameters showed no effect of aging, with a high CR and low TP values denoting a high masking-ability. 3Y-TZP presented lower masking-ability and aging significantly affected its optical properties. ZTA Vickers hardness, fracture toughness and Weibull parameters, including characteristic stress and Weibull modulus were not influenced by aging, while 3Y-TZP presented a significant decrease in characteristic stress and increase in fracture toughness after aging. The ZTA probability of survival for missions of 300 and 500 MPa was estimated at ~99% validating its use for 3-unit posterior fixed dental prostheses (FDP), and no different from conventional 3Y-TZP. At high-stress mission (800 MPa) a significant decrease in probability of survival was observed for aged 3Y-TZP (84%) and for immediate and aged ZTA (73 and 82% respectively). CONCLUSION: The ZTA composite presented a dense microstructure, with preservation of the crystalline content, optical and mechanical properties after artificial aging, which encourages future research to validate its potential use for large span FDP.


Subject(s)
Aluminum Oxide , Dental Prosthesis , Ceramics , Dental Materials , Materials Testing , Surface Properties , Yttrium , Zirconium
8.
Oper Dent ; 44(5): E254-E262, 2019.
Article in English | MEDLINE | ID: mdl-31172874

ABSTRACT

New resin-based restorative materials have been developed, such as computer-aided design/computer-aided manufacturing (CAD/CAM) and bulk-fill composites, as an alternative to traditional layering techniques. This study evaluated the biaxial flexural strength (BFS) before and after thermocycling of five different resin composites: one hybrid resin/ceramic CAD/CAM indirect material, Lava Ultimate CAD-CAM Restorative (LU, 3M Oral Care); a conventional composite, Filtek Z350 XT (Z350, 3M Oral Care); two bulk-fill composites, Tetric N-Ceram Bulk Fill (TBF, Ivoclar Vivadent) and Filtek Bulk Fill (FBF, 3M Oral Care); and one bulk-fill flow resin composite, Filtek Bulk Fill Flow (FBFF, 3M Oral Care). Three hundred disc-shaped specimens (6.5 mm in diameter and 0.5 mm thick) were fabricated and divided into five groups (n=30 for each composite and condition). The BFS test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min immediately (i, 24 hours) and after thermocycling (a, 500 thermal cycles of 5°C to 55°C with a 30-second dwell time). The Weibull modulus (m) and characteristic stress (η) were calculated, and a contour plot was used (m vs η) to detect differences between groups (95% two-sided confidence intervals). Significantly higher characteristic stress was observed for LUi (286.6 MPa) and Z350i (248.8 MPa) compared to the bulk-fill groups (FBFi=187.9 MPa, FBFFi=175.9 MPa, TBFi=149.9 MPa), with no differences between LUi and Z350i. Thermocycling significantly decreased the characteristic stress of all groups with the highest values observed for LUa (186.7 MPa) and Z350a (188.9 MPa) and the lowest for FBFFa (90.3 MPa). Intermediate values were observed for FBFa (151.6 MPa) and TBFa (122.8 MPa). The Weibull modulus decreased only for FBFa compared to FBFi. Composition and thermocycling significantly influenced the biaxial flexural strength of resin composite materials.


Subject(s)
Composite Resins , Flexural Strength , Ceramics , Computer-Aided Design , Dental Materials , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...