Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 326(Pt A): 116742, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375437

ABSTRACT

The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn2+) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn2+ sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes.


Subject(s)
Inula , Water Pollutants, Chemical , Zinc/chemistry , Wastewater/analysis , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Spectroscopy, Fourier Transform Infrared
2.
Bull Environ Contam Toxicol ; 104(6): 792-798, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32335690

ABSTRACT

In this study, the photodegradation of organophosphorus (OPs) pesticides in the honey medium was evaluated under sunlight irradiation. Some of the 22 samples collected at different sites contained OPs pesticides (Methyl parathion, Coumaphos and Fenitrothion) with an average of 8 ng/g. Moreover, three samples were found with pesticide residue levels exceeding the maximum residue limits (MRL ≥ 50 ng/g) imposed by the standard water (WHO). Gas chromatography (GC) combined with a tritium electron capture detector system was used for the analysis of OPs pesticides in honey. Total degradation of the Methyl parathion was obtained in less than 60 min of irradiation. Moreover, the elimination of the other OPs found in the samples was also effective with a rate of 85% for Coumaphos and Fenitrothion after 50 min of sunlight irradiation. The kinetics of the photodegradation reaction of all OPs pesticides studied followed a pseudo-first order model.


Subject(s)
Food Contamination/analysis , Food Contamination/prevention & control , Honey/analysis , Organophosphorus Compounds/analysis , Pesticides/analysis , Sunlight , Algeria , Chromatography, Gas , Honey/radiation effects , Honey/standards , Kinetics , Pesticide Residues/analysis , Photolysis
3.
RSC Adv ; 10(40): 24145-24158, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517317

ABSTRACT

Four amine derivative compounds were synthesized: 2-[(phenylamino)methyl]phenol, 2-{[(4-hydroxyphenyl)amino]methyl}phenol, 2-[(2-hydroxybenzyl)amino]benzonitrile and 2-{[(3-chlorophenyl)amino]methyl}phenol. The structure of the organic molecules was confirmed by FT-IR, 13C NMR and 1H NMR spectroscopy analyses. Their corrosion inhibition performances on mild steel in 1 M HCl were investigated using electrochemical measurements and surface analysis. Scanning electron microscopy analysis confirms the presence on the mild steel surface of a protective film of the as-prepared organic compounds, which depends on the substituent groups. Moreover, density functional theory and molecular dynamics simulation were employed in order to determine the adsorption mechanism and the position of amine derivative molecules towards the mild steel surface in an aggressive solution and to confirm the electrochemical results. The inhibition efficiency (IE) decreases with a decrease in concentration and the adsorption obeyed the Langmuir isotherm. The substitution of the OH group on the aromatic ring by Cl or CN increases IE to 90.23 and 92.56%, respectively. Molecular dynamics simulations attested that the four molecules were adsorbed on the Fe (110) surface in a flat position in the presence of water and HCl with high interaction between the different groups of the inhibitors and mild steel surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...