Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32824908

ABSTRACT

Several epidemiological studies found an association between acute exposure to fine particulate matter of less than 2.5 µm and 10 µm in aerodynamic diameter (PM2.5 and PM10) and cardiovascular diseases, ventricular fibrillation incidence and mortality. The effects of pollution on atrial fibrillation (AF) beyond the first several hours of exposure remain controversial. A total of 145 patients with implantable cardioverter-defibrillators (ICDs), cardiac resynchronization therapy defibrillators (ICD-CRT), or pacemakers were enrolled in this multicentric prospective study. Daily levels of PM2.5 and PM10 were collected from monitoring stations within 20 km of the patient's residence. A Firth Logistic Regression model was used to evaluate the association between AF and daily exposure to PM2.5 and PM10. Exposure levels to PM2.5 and PM10 were moderate, being above the World Health Organization (WHO) PM2.5 and PM10 thresholds of 25 µg/m3 and 50 µg/m3, respectively, on 26% and 18% of the follow-up days. An association was found between daily levels of PM2.5 and PM10 and AF (95% confidence intervals (CIs) of 1.34-2.40 and 1.44-4.28, respectively) for an increase of 50 µg/m3 above the WHO threshold. Daily exposure to moderate PM2.5 and PM10 levels is associated with AF in patients who are not prone to AF.


Subject(s)
Air Pollutants , Air Pollution , Atrial Fibrillation , Particulate Matter , Aged , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Atrial Fibrillation/epidemiology , Environmental Exposure , Female , Humans , Male , Particulate Matter/analysis , Particulate Matter/toxicity , Patients , Prospective Studies
2.
Lancet Planet Health ; 1(2): e58-e64, 2017 05.
Article in English | MEDLINE | ID: mdl-29851582

ABSTRACT

BACKGROUND: Although the effects of air pollution on mortality have been clearly shown in many epidemiological and observational studies, the pro-arrhythmic effects remain unknown. We aimed to assess the short-term effects of air pollution on ventricular arrhythmias in a population of high-risk patients with implantable cardioverter-defibrillators (ICDs) or cardiac resynchronisation therapy defibrillators (ICD-CRT). METHODS: In this prospective multicentre study, we assessed 281 patients (median age 71 years) across nine centres in the Veneto region of Italy. Episodes of ventricular tachycardia and ventricular fibrillation that were recorded by the diagnostic device were considered in this analysis. Concentrations of particulate matter of less than 10 µm (PM10) and less than 2·5 µm (PM2·5) in aerodynamic diameter, carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were obtained daily from monitoring stations, and the 24 h median value was considered. Each patient was associated with exposure data from the monitoring station that was closest to their residence. Patients were followed up for 1 year and then scheduled to have a closing visit, within 1 more year. This study is registered with ClinicalTrials.gov, number NCT01723761. FINDINGS: Participants were enrolled from April 1, 2011, to Sept 30, 2012, and follow-ups (completed on April 5, 2014) ranged from 637 to 1177 days (median 652 days). The incidence of episodes of ventricular tachycardia and ventricular fibrillation correlated significantly with PM2·5 (p<0·0001) but not PM10. An analysis of ventricular fibrillation episodes alone showed a significant increase in risk of higher PM2·5 (p=0·002) and PM10 values (p=0·0057). None of the gaseous pollutants were significantly linked to the occurrence of ventricular tachycardia or ventricular fibrillation. In a subgroup analysis of patients with or without a previous myocardial infarction, only the first showed a significant association between particulate matter and episodes of ventricular tachycardia or ventricular fibrillation. INTERPRETATION: Particulate matter has acute pro-arrhythmic effects in a population of high-risk patients, which increase on exposure to fine particles and in patients who have experienced a previous myocardial infarction. The time sequence of the arrhythmic events suggests there is an underlying neurally mediated mechanism. From a clinical point of view, the results of our study should encourage physicians to also consider environmental risk when addressing the prevention of arrhythmic events, particularly in patients with coronary heart disease, advising them to avoid exposure to high levels of fine particulate matter. FUNDING: There was no funding source for this study.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Arrhythmias, Cardiac , Particulate Matter/adverse effects , Aged , Air Pollutants/analysis , Air Pollution/analysis , Arrhythmias, Cardiac/therapy , Carbon Monoxide/analysis , Defibrillators, Implantable , Environmental Monitoring , Female , Humans , Male , Middle Aged , Myocardial Infarction , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Risk Factors , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...