Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(23): 6212-6215, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039229

ABSTRACT

Depressed-cladding surface channel waveguides were inscribed in a 0.5 at.% Pr:LiYF4 crystal by femtosecond Direct Laser Writing. The waveguides consisted of a half-ring cladding (inner diameter: 17 µm) and side structures ("ears") improving the mode confinement. The waveguide propagation loss was as low as 0.14 ± 0.05 dB/cm. The orange waveguide laser operating in the fundamental mode delivered 274 mW at 604.3 nm with 28.4% slope efficiency, a laser threshold of only 29 mW and linear polarization (π), representing record-high performance for orange Pr waveguide lasers.

2.
Opt Lett ; 48(7): 1730-1733, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221752

ABSTRACT

We report on the first, to the best of our knowledge, continuous-wave laser operation of a Tm3+,Ho3+-codoped calcium fluoride crystal at ∼2.1 µm. Tm,Ho:CaF2 crystals were grown by the Bridgman method, and their spectroscopic properties were studied. The stimulated-emission cross section for the 5I7 → 5I8 Ho3+ transition is 0.72 × 10-20 cm2 at 2025 nm, and the thermal equilibrium decay time is 11.0 ms. A 3 at. % Tm, 0.3 at. % Ho:CaF2 laser generated 737 mW at 2062-2088 nm with a slope efficiency of 28.0% and a laser threshold of 133 mW. Continuous wavelength tuning between 1985 and 2114 nm (tuning range: 129 nm) was demonstrated. The Tm,Ho:CaF2 crystals are promising for ultrashort pulse generation at ∼2 µm.

3.
Opt Express ; 31(10): 16634-16644, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157739

ABSTRACT

We report on sub-50 fs pulse generation from a passively mode-locked Yb:SrF2 laser pumped with a spatially single-mode, fiber-coupled laser diode at 976 nm. In the continuous-wave regime, the Yb:SrF2 laser generated a maximum output power of 704 mW at 1048 nm with a threshold of 64 mW and a slope efficiency of 77.2%. A continuous wavelength tuning across 89 nm (1006 - 1095 nm) was achieved with a Lyot filter. By implementing a SEmiconductor Saturable Absorber Mirror (SESAM) for initiating and sustaining the mode-locked operation, soliton pulses as short as 49 fs were generated at 1057 nm with an average output power of 117 mW at a pulse repetition rate of ∼75.9 MHz. The maximum average output power of the mode-locked Yb:SrF2 laser was scaled up to 313 mW for slightly longer pulses of 70 fs at 1049.4 nm, corresponding to a peak power of 51.9 kW and an optical efficiency of 34.7%.

4.
Opt Lett ; 48(2): 431-434, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638475

ABSTRACT

We report on the first, to our knowledge, mid-infrared laser operation of two Er3+-doped barium-containing fluorite-type crystals, BaF2 and (Sr,Ba)F2, featuring a low-phonon energy behavior. A continuous wave 4.9 at.% Er:(Sr,Ba)F2 laser generated 519 mW at 2.79 µm with a slope efficiency of 25.0% and a laser threshold of 27 mW. The vibronic and spectroscopic properties of these crystals are determined. The phonon energy of (Sr,Ba)F2 is as low as 267 cm-1. The Er3+ ions in this crystal feature a broadband emission owing to the 4I11/2 → 4I13/2 transition and a long luminescence lifetime of the 4I11/2 level (10.6 ms) making this compound promising for low-threshold, broadly tunable, and pulsed 2.8-µm lasers.

5.
Opt Express ; 30(7): 11840-11847, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473119

ABSTRACT

A 4.5 at.% Tm, 0.5 at.% Ho:LiYF4 planar waveguide (thickness: 25 µm) grown by Liquid Phase Epitaxy is in-band pumped by a Raman fiber laser at 1679 nm (the 3H6 → 3F4 Tm3+ transition). A continuous-wave waveguide laser generates a maximum output power of 540 mW at 2051nm with a slope efficiency of 32.6%, a laser threshold of 337 mW and a linear laser polarization (π). This represents the highest output power extracted from any Tm,Ho waveguide laser. No parasitic Tm3+ colasing is observed. The waveguide propagation losses are determined to be as low as 0.19 dB/cm.

6.
Opt Express ; 30(9): 15807-15818, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473293

ABSTRACT

We report on a continuous-wave (CW) and passively mode-locked operation of a fluorite-type Yb:BaF2 crystal. Pumped with a spatially single-mode, fiber-coupled InGaAs laser diode at 976 nm, the Yb:BaF2 laser generated a maximum CW output power of 512 mW at 1054.4 nm, corresponding to a laser threshold of 36.5 mW and a slope efficiency of 65.0%. A continuous wavelength tuning across 85 nm (1007-1092 nm) was achieved. By implementing a semiconductor saturable absorber mirror for initiating and sustaining the soliton pulse shaping, near Fourier-transform-limited pulses as short as 52 fs were generated at 1058.2 nm with an average output power of 129 mW at a pulse repetition rate of ∼79.5 MHz. To the best of our knowledge, this is the first report on the passively mode-locked operation of the Yb:BaF2 crystal.

7.
Opt Express ; 30(5): 8092-8103, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299557

ABSTRACT

Mid-infrared Er:CaF2 laser operating on the 4I11/2 → 4I13/2 transition is developed. Its power scaling capabilities and thermo-optics (fractional heat loading and thermal lensing) are compared under pumping into the 4I11/2 and 4I9/2 states. Using a 4.5 at.% Er:CaF2 crystal, a record-high continuous-wave output power of 0.83 W is achieved at 2800 nm with a slope efficiency of 31.6% and a laser threshold of 24 mW and the fractional heat loading is measured under lasing and non-lasing conditions, yielding the values of 52.0% and 71.7%, respectively (for pumping at 967.6 nm, into the 4I11/2 state). The thermal lens in Er:CaF2 is negative (divergent) owing to the negative thermo-optic coefficient and large and negative contribution of the photo-elastic effect. The sensitivity factors of the thermal lens are Mr = -4.84 and Mθ = -5.15 [m-1/(kW/cm2)] and the astigmatism degree is as low as 6%. When pumping into the higher lying 4I9/2 manifold, the thermal lens is enhanced owing to the additional heat generation from the multiphonon non-radiative path from this state, and the laser slope efficiency is deteriorated.

8.
Opt Lett ; 46(22): 5739-5742, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34780450

ABSTRACT

We report on the mid-infrared laser operation of a cubic 15 at.% Er3+:KY3F10 crystal. In the quasi-continuous-wave regime, the peak power reaches 255 mW at 2.80 µm (the 4I11/2→4I13/2 transition) with a slope efficiency of 10.9% and a laser threshold of 58 mW. Two pumping schemes (to the 4I11/2 and 4I9/2 states) are compared. The emission properties of the Er3+ ions in KY3F10 are studied, indicating high stimulated-emission cross-section of 0.57×10-20cm2 at 2.80 µm, a large gain bandwidth of 40 nm, and a long 4I11/2 state lifetime of 4.64 ms.

9.
Opt Express ; 29(22): 35735-35754, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34809002

ABSTRACT

We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements. The ultrasonic signatures in a semiconductor multi-quantum-well structure originating from the quantum wells and superlattice regions are revealed and discussed. We further demonstrate ultrasonic measurements on a thin-film metalized sample and compare these measurements to ones obtained with a pair of locked femtosecond lasers. Our data show that a free-running dual-comb laser is well-suited for picosecond ultrasonic measurements and thus it offers a significant reduction in complexity and cost for this widely adopted non-destructive testing technique.

10.
Opt Express ; 28(18): 26676-26689, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906937

ABSTRACT

We report on a novel approach to fabricate channel (ridge) waveguides (WGs) in bulk crystals using precision diamond saw dicing. The channels feature a high depth-to-width aspect ratio (deep dicing). The proof-of-the-concept is shown for a Tm3+:LiYF4 fluoride crystal. Channels with a depth of 200 µm and widths of 10-50 µm are diced and characterized by confocal laser microscopy revealing a r.m.s. roughness of the walls well below 100 nm. The channels obtained possess waveguiding properties at ∼815 nm with almost no leakage of the guided mode having a vertical stripe intensity profile into the bulk crystal volume and relatively low propagation losses (0.20-0.43 dB/cm). Laser operation is achieved in quasi-CW regime by pumping at 780 nm. The maximum peak output power reaches 0.68 W at ∼1.91 µm with a slope efficiency of 53.3% (in σ-polarization). The proposed concept is applicable to a variety of laser crystals with different rare-earth dopants.

11.
Opt Express ; 27(9): 12647-12658, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052803

ABSTRACT

Calcium fluoride is a well-known material for optical components. It is also suited for doping with rare-earth ions, e.g., ytterbium ones. Yb:CaF2 is an efficient gain medium for high-power and ultrashort-pulse bulk lasers around 1 µm. We report on the first Yb:CaF2 planar waveguide laser. High-optical-quality single-crystalline waveguiding Yb:CaF2 thin films are grown on bulk CaF2 substrates by Liquid Phase Epitaxy. The spectroscopic study indicates the predominant coordination of isolated Yb3+ ions in trigonal oxygen-assisted sites, C3v(T2). The optical gain in Yb:CaF2 waveguide is demonstrated. A 1.4 at.% Yb:CaF2 planar waveguide laser generated 114 mW at 1037 nm with a slope efficiency of 12.9%. Yb:CaF2 films are promising for power-scalable waveguide mode-locked lasers and amplifiers.

12.
Opt Lett ; 38(4): 455-7, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23455100

ABSTRACT

In this Letter we report on room temperature continuous wave laser operation in the red (639 nm, (3)P(0)→(3)F(2)) and orange (604 nm, (3)P(0)→(3)H(6)) spectral regions of Pr(3+)-doped LiYF(4) planar waveguides fabricated by liquid phase epitaxy. Output powers of 25 and 12 mW and slope efficiencies of 5% and 6% were achieved at 639 and 604 nm, respectively, by pumping with an optically pumped semiconductor laser operating at 479.2 nm.

13.
Opt Lett ; 37(19): 4032-4, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23027269

ABSTRACT

Continuous wave laser operation at 1.87 µm of liquid-phase epitaxially (LPE) grown Tm(3+)-doped YLiF(4) (Tm:YLF) layers is demonstrated. The waveguide laser delivers 560 mW by pumping with a Ti:Sapphire laser at 780 nm leading to an efficiency of 76% with respect to the absorbed pump power. This constitutes the first Tm(3+)-doped crystalline fluoride waveguide laser ever demonstrated as well as a record in efficiency and output power for an LPE grown waveguide laser operating in the 2 µm spectral range.


Subject(s)
Lasers, Solid-State , Thulium/chemistry , Absorption , Fluorides/chemistry
14.
Article in English | MEDLINE | ID: mdl-16615571

ABSTRACT

This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

SELECTION OF CITATIONS
SEARCH DETAIL
...