Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 21(1): 284, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34663220

ABSTRACT

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir. Their excretion in bovine feces leads to the contamination of foods and the environment. Thus, providing knowledge of processes used by EHEC to survive and/or develop all along the bovine gut represents a major step for strategies implementation. RESULTS: We compared the transcriptome of the reference EHEC strain EDL933 incubated in vitro in triplicate samples in sterile bovine rumen, small intestine and rectum contents with that of the strain grown in an artificial medium using RNA-sequencing (RNA-seq), focusing on genes involved in stress response, adhesion systems including the LEE, iron uptake, motility and chemotaxis. We also compared expression of these genes in one digestive content relative to the others. In addition, we quantified short chain fatty acids and metal ions present in the three digestive contents. RNA-seq data first highlighted response of EHEC EDL933 to unfavorable physiochemical conditions encountered during its transit through the bovine gut lumen. Seventy-eight genes involved in stress responses including drug export, oxidative stress and acid resistance/pH adaptation were over-expressed in all the digestive contents compared with artificial medium. However, differences in stress fitness gene expression were observed depending on the digestive segment, suggesting that these differences were due to distinct physiochemical conditions in the bovine digestive contents. EHEC activated genes encoding three toxin/antitoxin systems in rumen content and many gene clusters involved in motility and chemotaxis in rectum contents. Genes involved in iron uptake and utilization were mostly down-regulated in all digestive contents compared with artificial medium, but feo genes were over-expressed in rumen and small intestine compared with rectum. The five LEE operons were more expressed in rectum than in rumen content, and LEE1 was also more expressed in rectum than in small intestine content. CONCLUSION: Our results highlight various strategies that EHEC may implement to survive in the gastrointestinal environment of cattle. These data could also help defining new targets to limit EHEC O157:H7 carriage and shedding by cattle.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli O157/physiology , Gastrointestinal Contents/chemistry , Gastrointestinal Tract/microbiology , Stress, Physiological/genetics , Animals , Cattle , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Fatty Acids, Volatile/analysis , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Ions/analysis , Transcriptome
2.
Sci Rep ; 11(1): 17478, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471154

ABSTRACT

Mass-wasting of ocean island volcanoes is a well-documented phenomenon. Massive flank collapses may imply tens to hundreds of km3 and generate mega-tsunamis. However, the causal links between this large-scale, low-frequency instability, and the time-space evolution of magma storage, crystal fractionation/accumulation, lithospheric assimilation, and partial melting remains unclear. This paper aims at tracking time variations and links between lithospheric, crustal and surface processes before and after a major flank collapse (Monte Amarelo collapse ca. 70 ka) of Fogo volcano, Cape Verde Islands, by analysing the chemical composition (major, trace elements, and Sr-Nd-Pb isotopes) and age-controlled stratigraphy (K-Ar and Ar-Ar dating) of lavas along vertical sections (Bordeira caldera walls). The high-resolution sampling allows detecting original variations of composition at different time-scales: (1) a 60 kyrs-long period of increase of magma differentiation before the collapse; (2) a 10 kyrs-long episode of reorganization of magma storage and evacuation of residual magmas (enriched in incompatible elements) after the collapse; and (3) a delayed impact at the lithospheric scale ~ 50 kyrs after the collapse (increasing EM1-like materiel assimilation).

3.
J Mater Chem B ; 9(36): 7423-7434, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34373887

ABSTRACT

Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF4:Yb,Tm@NaYF4 core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG(2000) ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (i.e., glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@CO2H. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after 125I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [125I]UCNP paving the way for future in vivo assessments.


Subject(s)
Antigens, Surface/metabolism , Coated Materials, Biocompatible/chemistry , Glutamate Carboxypeptidase II/metabolism , Magnetite Nanoparticles/chemistry , Animals , Antigens, Surface/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/metabolism , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/therapeutic use , Cycloaddition Reaction , Fluorides/chemistry , Glutamate Carboxypeptidase II/chemistry , Humans , Ligands , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/toxicity , Male , Mice , Oleic Acids/chemistry , Optical Imaging , Particle Size , Polyethylene Glycols/chemistry , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Thulium/chemistry , Tissue Distribution , Ytterbium/chemistry , Yttrium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...