Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
2.
J Diabetes Metab Disord ; 20(2): 1449-1454, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34900796

ABSTRACT

BACKGROUND: Metabolic syndrome (MS) is becoming a major health risk in the world. Disorders of homeostasis are a trigger for MS and subsequent cardiometabolic diseases (CMDs). Its physiological role can be supported by biological protectors (BP). The purpose of this study is to develop a BP system for managing the MS development. METHODS: Within the framework of the case-control study, 3000 participants aged 20-60 years formed 2 groups: the main group and the control group. RESULTS: The study compared traditional markers of oxidative stress, chronic inflammation, and insulin resistance, which reflect the state of homeostasis. The BP system, proposed based on the concept of maintaining homeostasis, offers the following points for investigating the possibilities of therapeutic intervention: confronting dysregulation of homeostasis, resisting chronic inflammation and oxidative stress, resisting the consequences of disturbed homeostasis. This approach not only contributed to the understanding of general biological processes, but also provided a targeted search and development of BP to maintain the stability of homeostasis with MS. CONCLUSIONS: The study results provided insight into new opportunities in the MS management.

3.
Biomed Res Int ; 2013: 709145, 2013.
Article in English | MEDLINE | ID: mdl-24089686

ABSTRACT

APP/PS1 double-transgenic mouse models of Alzheimer's disease (AD), which overexpress mutated forms of the gene for human amyloid precursor protein (APP) and presenilin 1 (PS1), have provided robust neuropathological hallmarks of AD-like pattern at early ages. This study characterizes immunocytochemical patterns of AD mouse brain as a model for human AD treated with the EB101 vaccine. In this novel vaccine, a new approach has been taken to circumvent past failures by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol). Our findings showed that administration of amyloid-ß1₋42 (Aß) and sphingosine-1-phosphate emulsified in liposome complex (EB101) to APP/PS1 mice before onset of Aß deposition (7 weeks of age) and/or at an older age (35 weeks of age) is effective in halting the progression and clearing the AD-like neuropathological hallmarks. Passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus) in the brain of treated mice was notably reduced. These results demonstrate that immunization with EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/immunology , Amyloid beta-Peptides/genetics , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/immunology , Amyloid beta-Protein Precursor/therapeutic use , Animals , Astrocytes/drug effects , Astrocytes/immunology , Disease Models, Animal , Humans , Immunotherapy, Active , Mice , Mice, Transgenic , Presenilin-1/immunology
4.
Aging Dis ; 4(5): 244-55, 2013.
Article in English | MEDLINE | ID: mdl-24124630

ABSTRACT

Alzheimer disease (AD) is the most common dementing illness. Metabolic defects in the brain with aging contribute to the pathogenesis of AD. These changes can be found systematically and thus can be used as potential biomarkers. Erythrocytes (RBCs) are passive "reporter cells" that are not well studied in AD. In the present study, we analyzed an array of glycolytic and related enzymes and intermediates in RBCs from patients with AD and non-Alzheimer dementia (NA), age-matched controls (AC) and young adult controls (YC). AD is characterized by higher activities of hexokinase, phosphofructokinase, and bisphosphoglycerate mutase and bisphosphoglycerate phosphatase in RBCs. In our study, we observed that glycolytic and related enzymes displayed significantly lower activities in AC. However, similar or significantly higher activities were observed in AD and NA groups as compared to YC group. 2,3-diphosphoglycerate (2,3-DPG) levels were significantly decreased in AD and NA patients. The pattern of changes between groups in the above indices strongly correlates with each other. Collectively, our data suggested that AD and NA patients are associated with chronic disturbance of 2,3-DPG metabolism in RBCs. These defects may play a pivotal role in physiological processes, which predispose elderly subjects to AD and NA.

5.
Am J Alzheimers Dis Other Demen ; 28(7): 660-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24085255

ABSTRACT

It has been postulated that Alzheimer disease (AD) is a systemic process, which involves multiple pathophysiological factors. A combination of pharmacotherapy and nonpharmacological interventions has been proposed to treat AD and other dementia. The nonpharmacological interventions include but are not limited to increasing sensory input through physical and mental activities, in order to modify cerebral blood flow and implementing nutritional interventions such as diet modification and vitamins and nutraceuticals therapy to vitalize brain functioning. This article highlights the recent research findings regarding novel treatment strategies aimed at modifying natural course of the disease and delaying cognitive decline through simultaneous implementation of pharmacological and nonpharmacological modulators as standardized treatment protocols.


Subject(s)
Alzheimer Disease/therapy , Cognition Disorders/therapy , Depression/therapy , Alzheimer Disease/complications , Alzheimer Disease/physiopathology , Animals , Cognition Disorders/complications , Cognition Disorders/metabolism , Depression/etiology , Depression/metabolism , Dietary Supplements , Humans , Vitamins/metabolism
6.
Cent Asian J Glob Health ; 2(Suppl): 119, 2013.
Article in English | MEDLINE | ID: mdl-29805876

ABSTRACT

INTRODUCTION: APP/PS1 double-transgenic mouse models of Alzheimer's disease (AD), which overexpress mutated forms of the gene for the human amyloid precursor protein (APP) and presenilin 1 (PS1), have provided robust neuropathological hallmarks of an AD-like pattern at early ages. This study aimed to characterize immunocytochemical patterns of the AD mouse brain, which is treated with the EB101 vaccine, as a model for human AD. MATERIAL AND METHODS: In this novel vaccine, a new approach has been taken to circumvent past failures with Aß vaccines by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol). RESULTS: Our findings showed that the administration of amyloid-ß1-42 (Aß) and sphingosine-1-phosphate emulsified in liposome complex (EB101) to APP/PS1 mice before the onset of Aß brain deposition (at 7 weeks of age) and/or at an older age (35 weeks of age) can be effective in both halting the progression and clearing the AD-like neuropathological hallmarks. In addition, passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus) in the brain of treated mice was notably reduced. CONCLUSION: These results provide strong evidence that immunization with the EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.

SELECTION OF CITATIONS
SEARCH DETAIL