Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Hum Genet ; 140(1): 43-57, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33108537

ABSTRACT

Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.


Subject(s)
Infertility, Male/genetics , Membrane Proteins/genetics , Teratozoospermia/genetics , Testicular Hormones/genetics , Cohort Studies , Gene Deletion , Genetic Association Studies/methods , Genetic Testing/methods , Homozygote , Humans , Male , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Spermatozoa/abnormalities , Exome Sequencing/methods
2.
Urol Int ; 90(4): 455-9, 2013.
Article in English | MEDLINE | ID: mdl-23548818

ABSTRACT

The human Y chromosome is essential for human sex determination and spermatogenesis. The long arm contains the azoospermia factor (AZF) region. Microdeletions in this region are responsible for male infertility. The objective of this study was to determine the frequency of Y microdeletions in Algerian infertile males with azoospermia and oligoasthenoteratozoospermia syndrome (OATS) and to compare the prevalence of these abnormalities with other countries and regions worldwide. A sample of 80 Algerian infertile males with a low sperm count (1-20 × 10(6) sperms/ml) as well as 20 fertile male controls was screened for Y chromosome microdeletions. 49 men were azoospermic and 31 men had OATS. Genomic DNA was isolated from blood and polymerase chain reaction was carried out with a set of 6 AZFa, AZFb and AZFc STS markers to detect the microdeletions as recommended by the European Academy of Andrology. Among the 80 infertile men screened for microdeletion, 1 subject was found to have microdeletions in the AZFc (sY254 and sY255) region. The deletion was found in azoospermic subjects (1/49, 2%). The overall AZF deletion frequency was low (1/80, 1.3%). AZF microdeletions were observed neither in the OATS group nor in the control group. The frequency of AZF microdeletions in infertile men from Algeria was comparable to those reported in the literature. We suggest analyzing 6 STS in the first step to detect Y microdeletions in our population.


Subject(s)
Azoospermia/genetics , Fertility/genetics , Genetic Diseases, Y-Linked/genetics , Infertility, Male/genetics , Oligospermia/genetics , Sex Chromosome Disorders of Sex Development/genetics , Adult , Algeria , Azoospermia/diagnosis , Azoospermia/physiopathology , Case-Control Studies , Chromosome Deletion , Chromosomes, Human, Y/genetics , Genetic Diseases, Y-Linked/diagnosis , Genetic Diseases, Y-Linked/physiopathology , Genetic Predisposition to Disease , Genetic Testing , Humans , Infertility, Male/diagnosis , Infertility, Male/physiopathology , Male , Middle Aged , Oligospermia/diagnosis , Oligospermia/physiopathology , Phenotype , Sex Chromosome Aberrations , Sex Chromosome Disorders of Sex Development/diagnosis , Sex Chromosome Disorders of Sex Development/physiopathology , Sperm Count , Sperm Motility , Spermatozoa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...