Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Min Metall Explor ; 39(4): 1357-1389, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-36157137

ABSTRACT

Given the recent focus on powered haulage incidents within the US mining sector, an appraisal of collision avoidance/warning systems (CXSs) through the lens of the available research literature is timely. This paper describes a rapid review that identifies, characterizes, and classifies the research literature to evaluate the maturity of CXS technology through the application of a Technology Readiness Assessment. Systematic search methods were applied to three electronic databases, and relevant articles were identified through the application of inclusion and exclusion criteria. Sixty-four articles from 2000 to 2020 met these criteria and were categorized into seven CXS technology categories. Review and assessment of the articles indicates that much of the literature-based evidence for CXS technology lies within lower levels of maturity (i.e., components and prototypes tested under laboratory conditions and in relevant environments). However, less evidence exists for CXS technology at higher levels of maturity (i.e., complete systems evaluated within operational environments) despite the existence of commercial products in the marketplace. This lack of evidence at higher maturity levels within the scientific literature highlights the need for systematic peer-reviewed research to evaluate the performance of CXS technologies and demonstrate the efficacy of prototypes or commercial products, which could be fostered by more collaboration between academia, research institutions, manufacturers, and mining companies. Additionally, results of the review reveal that most of the literature relevant to CXS technologies is focused on vehicle-to-vehicle interactions. However, this contrasts with haul truck fatal accident statistics that indicate that most haul truck fatal accidents are due to vehicle-to-environment interactions (e.g., traveling through a berm). Lastly, the relatively small amount of literature and segmented nature of the included studies suggests that there is a need for incremental progress or more stepwise research that would facilitate the improvement of CXS technologies over time. This progression over time could be achieved through continued long-term interest and support for CXS technology research.

2.
PLoS One ; 9(3): e92263, 2014.
Article in English | MEDLINE | ID: mdl-24642611

ABSTRACT

In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thin-sliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.


Subject(s)
Magnetic Resonance Imaging/methods , Pancreas/growth & development , Aging , Animals , Magnetic Resonance Imaging/instrumentation , Male , Mice , Organ Size , Pancreas/anatomy & histology , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...