Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e15378, 2023.
Article in English | MEDLINE | ID: mdl-37434869

ABSTRACT

Gorgonopsians are among the most recognizable groups of synapsids from the Permian period and have an extensive but mostly cranial fossil record. By contrast, relatively little is known about their postcranial anatomy. Here, we describe a nearly complete, semi-articulated skeleton of a gorgonopsian (identified as Gorgonops torvus) from the late Permian Endothiodon Assemblage Zone of the South African Karoo Basin and discuss its paleobiological implications. Known gorgonopsian postcrania indicate morphological conservatism in the group, but the skeletal anatomy of Gorgonops does differ from that of other gorgonopsians in some respects, such as in the triangular radiale and short terminal phalanges in the manus, and a weakly developed distinction between pubis and ischium in ventral aspect of the pelvic girdle. Similarities between the specimen described herein and a historically problematic specimen originally referred to "Scymnognathus cf. whaitsi" confirm referral of the latter specimen to Gorgonops. Since descriptions of gorgonopsian postcrania are rare, new interpretations of the lifestyle and ecology of Gorgonopsia can be drawn from our contribution. We conclude that gorgonopsians were likely ambush predators, able to chase their prey over short distances and pin them down with strong forelimbs before using their canines for the kill. This is evidenced by their different fore- and hindlimb morphology; the former stouter and more robust in comparison to the longer, more gracile, back legs. Furthermore, the completeness of the study specimen facilitates calculation of an estimated body mass of approximately 98 kg, similar to that of a modern lioness.


Subject(s)
Dinosaurs , Animals , South Africa , Dinosaurs/anatomy & histology , Fossils
2.
Sci Rep ; 12(1): 13472, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931742

ABSTRACT

The sternum is a stabilizing element in the axial skeleton of most tetrapods, closely linked with the function of the pectoral girdle of the appendicular skeleton. Modern mammals have a distinctive sternum characterized by multiple ossified segments, the origins of which are poorly understood. Although the evolution of the pectoral girdle has been extensively studied in early members of the mammalian total group (Synapsida), only limited data exist for the sternum. Ancestrally, synapsids exhibit a single sternal element and previously the earliest report of a segmental sternum in non-mammalian synapsids was in the Middle Triassic cynodont Diademodon tetragonus. Here, we describe the well-preserved sternum of a gorgonopsian, a group of sabre-toothed synapsids from the Permian. It represents an ossified, multipartite element resembling the mammalian condition. This discovery pulls back the origin of the distinctive "mammalian" sternum to the base of Theriodontia, significantly extending the temporal range of this morphology. Through a review of sternal morphology across Synapsida, we reconstruct the evolutionary history of this structure. Furthermore, we explore its role in the evolution of mammalian posture, gait, and ventilation through progressive regionalization of the postcranium as well as the posteriorization of musculature associated with mammalian breathing.


Subject(s)
Biological Evolution , Locomotion , Fossils , Respiration , Sternum/anatomy & histology
3.
Proc Biol Sci ; 287(1935): 20201818, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32993469

ABSTRACT

The acquisition of elongated, sabre-like canines in multiple vertebrate clades during the last 265 Myr represents a remarkable example for convergent evolution. Due to striking superficial similarities in the cranial skeleton, the same or similar skull and jaw functions have been inferred for sabre-toothed species and interpreted as an adaptation to subdue large-bodied prey. However, although some sabre-tooth lineages have been classified into different ecomorphs (dirk-tooths and scimitar-tooths) the functional diversity within and between groups and the evolutionary paths leading to these specializations are unknown. Here, we use a suite of biomechanical simulations to analyse key functional parameters (mandibular gape angle, bending strength, bite force) to compare the functional performance of different groups and to quantify evolutionary rates across sabre-tooth vertebrates. Our results demonstrate a remarkably high functional diversity between sabre-tooth lineages and that different cranial function and prey killing strategies evolved within clades. Moreover, different biomechanical adaptations in coexisting sabre-tooth species further suggest that this functional diversity was at least partially driven by niche partitioning.


Subject(s)
Biological Evolution , Carnivora , Tooth/anatomy & histology , Animals , Biomechanical Phenomena , Bite Force , Fossils , Mandible , Skull/anatomy & histology
4.
PLoS One ; 13(11): e0207367, 2018.
Article in English | MEDLINE | ID: mdl-30485338

ABSTRACT

Gorgonopsia is one of the major clades of non-mammalian synapsids, and includes an array of large-bodied carnivores that were the top terrestrial predators of the late Permian. Most research on the clade has focused on these largest members; small-bodied gorgonopsians are relatively little-studied. Here, we redescribe a small gorgonopsian skull (MB.R.999) from the late Permian (Tropidostoma Assemblage Zone) of South Africa on the basis of neutron and synchrotron CT reconstructions, which yield new data on internal cranial morphology in Gorgonopsia. Because of the largely undistorted nature of MB.R.999, we were also able to reconstruct unossified areas such as the brain endocast and the otic labyrinth. MB.R.999 can be referred to the taxon Cynariops robustus based on its general skull proportions, postcanine tooth count, preparietal morphology, and vomerine morphology. We refer additional small gorgonopsian specimens from the Victoria West area to Cynariops robustus, and consider Cynarioides grimbeeki and Cynarioides laticeps to be synonymous with C. robustus. Inclusion of Cynariops in a phylogenetic analysis of Gorgonopsia recovers it within a large clade of African taxa, more closely related to Lycaenops and rubidgeines than Eriphostoma or Gorgonops.


Subject(s)
Fossils , Skull/anatomy & histology , Skull/diagnostic imaging , Tomography, X-Ray Computed , Vertebrates/anatomy & histology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...