Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 48(5): 1469-87, 2004 May.
Article in English | MEDLINE | ID: mdl-15105094

ABSTRACT

The reverse transcriptase inhibitor 9-[2-(phosphonomethoxy)propyl]adenine (PMPA; tenofovir) was previously found to offer strong prophylactic and therapeutic benefits in an infant macaque model of pediatric human immunodeficiency virus (HIV) infection. We now summarize the toxicity and safety of PMPA in these studies. When a range of PMPA doses (4 to 30 mg/kg of body weight administered subcutaneously once daily) was administered to 39 infant macaques for a short period of time (range, 1 day to 12 weeks), no adverse effects on their health or growth were observed; this included a subset of 12 animals which were monitored for more than 2 years. In contrast, daily administration of a high dose of PMPA (30 mg/kg subcutaneously) for prolonged periods of time (>8 to 21 months) to 13 animals resulted in a Fanconi-like syndrome (proximal renal tubular disorder) with glucosuria, aminoaciduria, hypophosphatemia, growth restriction, bone pathology (osteomalacia), and reduced clearance of PMPA. The adverse effects were reversible or were alleviated following either complete withdrawal of PMPA treatment or reduction of the daily regimen from 30 mg/kg to 2.5 to 10 mg/kg subcutaneously. Finally, to evaluate the safety of a prolonged low-dose treatment regimen, two newborn macaques were started on a 10-mg/kg/day subcutaneous regimen; these animals are healthy and have normal bone density and growth after 5 years of daily treatment. In conclusion, our findings suggest that chronic daily administration of a high dose of PMPA results in adverse effects on kidney and bone, while short-term administration of relatively high doses and prolonged low-dose administration are safe.


Subject(s)
Adenine/analogs & derivatives , Adenine/toxicity , Animals, Newborn/physiology , Anti-HIV Agents/toxicity , Organophosphonates , Organophosphorus Compounds/toxicity , Absorptiometry, Photon , Adenine/administration & dosage , Adenine/pharmacokinetics , Animals , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Area Under Curve , Blood Chemical Analysis , Bone Density/drug effects , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/pathology , Dose-Response Relationship, Drug , Fanconi Syndrome/chemically induced , Fanconi Syndrome/physiopathology , Female , Glycosuria/chemically induced , Glycosuria/metabolism , Half-Life , Macaca mulatta , Male , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/pharmacokinetics , Phosphorus/urine , Tenofovir , Time Factors , Weight Gain/drug effects
2.
Leuk Res ; 27(11): 1039-50, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12859997

ABSTRACT

OSI-211 (liposomal lurtotecan), was evaluated using several different dose schedules (1mg/kg, d1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) in severe combined immunodeficient (SCID) mouse models of acute myelogenous leukemia (AML) and acute lymphocytic leukemia (ALL) with early treatment (ET, days 6-8) or late treatment (LT, days 15-19), examining early and advanced disease, respectively. Due to the aggressive nature of the Molt-4 model, the ET and LT were accelerated to day 3 or 4 and day 8 post-implant, respectively. For each model, 2 x 10(7) (KBM-3B) or 1 x 10(7) (Molt-4, HL-60 and CEM) leukemia cells were injected intravenously into the tail vein. Each control and test group consisted of eight animals. All three schedules (1mg/kg qd1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) increased the life span of OSI-211 treated animals in each model, with a tendency toward improved efficacy with the 6 mg/kg d1, 8 schedule. As a result, the activity of the 6 mg/kg d1, 8 schedule is detailed for each model. ET significantly (P<0.005) increased survival in the KBM-3B model with 86% long-term survivors (LTS). Using PRC analysis, human beta-globin gene sequences in one or several tissues were amplified in all but 3 LTS, suggesting minimal residual disease in 26 of the 29 LTS. LT also significantly (P<0.005) improved average life span in the KBM-3B model, with an average ILS=196+/-11% and one LTS. Treatment of HL-60 leukemia animals significantly (P<0.005) increased life span, with an ILS=213+/-9% and two LTS for ET, and with an ILS=219+/-4% and no LTS for LT. Treatment of Molt-4 animals, the most aggressive leukemia model tested, significantly (P<0.005) increased life span, with an average ILS=181+/-3% and no LTS for ET and an average ILS=172+/-1% with no LTS for LT. In the CEM model, ET resulted in a significantly (P<0.005) improved ILS=244+/-24% with one LTS. In comparison to OSI-211, treatment with DaunoXome, the liposomal formulation of daunorubicin, a drug with clinical efficacy in AML and ALL, had no effect on survival in the KBM-3B, nor Molt-4 A4 leukemia models when administered at its maximum or near maximum tolerated doses of 3mg/kg d1, 8. These data demonstrate that OSI-211 has potent antileukemia activity in preclinical SCID mouse AML and ALL leukemia models, supporting the clinical investigation of OSI-211 for hematological malignancies.


Subject(s)
Antineoplastic Agents/therapeutic use , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Disease Models, Animal , Drug Evaluation , Female , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Transplantation, Heterologous , Tumor Cells, Cultured
3.
Antiviral Res ; 58(3): 217-25, 2003 May.
Article in English | MEDLINE | ID: mdl-12767469

ABSTRACT

The antiviral compound tenofovir DF (Gilead Sciences) was evaluated for possible mitochondrial toxicity in rats, rhesus monkeys and woodchucks. Animals were treated by oral gavage with tenofovir DF, and the levels of mitochondrial enzymes cytochrome c oxidase and citrate synthase were assayed. In rats (6/group) treated daily for 28 days with 300 mg/kg tenofovir DF the enzyme levels were unchanged versus control in liver, kidney, and skeletal muscle. In a parallel study, rats (6/group) were treated with 40 mg/kg of the antiviral adefovir dipivoxil (Gilead Sciences) and enzyme levels were also unchanged versus control. In rhesus monkeys (6/group) treated daily with 30 mg/kg or 250 mg/kg tenofovir DF for 56 days, and in woodchucks (6/group) treated daily with 15 mg/kg or 50mg/kg tenofovir DF for 90 days, the enzyme levels were unchanged in liver, kidney, skeletal muscle and cardiac muscle. Mitochondrial DNA (mtDNA) content was determined in tissue from treated versus control animals by utilizing a quantitative real-time PCR (QPCR) technique, where the relative ratios of mitochondrial cytochrome b gene to the genomic actin gene were measured. The relative mtDNA content from rats, rhesus monkeys and woodchucks were unchanged in the various treatment groups. Variations in mtDNA content between animals in the same treatment group were noted. The actual species-dependent mitochondria/genomic ratios were estimated from the QPCR assay. In summary, treatment with tenofovir DF, or with adefovir dipivoxil, did not affect mtDNA content or level of mitochondrial enzymes, and no liver, muscle or renal microscopic abnormalities were observed in tenofovir-treated animals.


Subject(s)
Adenine/analogs & derivatives , Adenine/adverse effects , DNA, Mitochondrial/drug effects , Marmota , Mitochondria/enzymology , Organophosphonates , Organophosphorus Compounds/adverse effects , Reverse Transcriptase Inhibitors/adverse effects , Adenine/administration & dosage , Animals , Citrate (si)-Synthase/drug effects , Citrate (si)-Synthase/metabolism , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Electron Transport Complex IV/drug effects , Electron Transport Complex IV/metabolism , Macaca mulatta , Mitochondria/drug effects , Organ Specificity , Organophosphorus Compounds/administration & dosage , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/administration & dosage , Species Specificity , Tenofovir
SELECTION OF CITATIONS
SEARCH DETAIL
...