Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 338(1): 345-52, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21508084

ABSTRACT

Metabotropic glutamate receptor 7 (mGluR7) remains the most elusive of the eight known mGluRs primarily because of the limited availability of tool compounds to interrogate its potential therapeutic utility. The discovery of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) as the first orally active, brain-penetrable, mGluR7-selective allosteric agonist by Mitsukawa and colleagues (Proc Natl Acad Sci USA 102:18712-18717, 2005) provides a means to investigate this receptor system directly. AMN082 demonstrates mGluR7 agonist activity in vitro and interestingly has a behavioral profile that supports utility across a broad spectrum of psychiatric disorders including anxiety and depression. The present studies were conducted to extend the in vitro and in vivo characterization of AMN082 by evaluating its pharmacokinetic and metabolite profile. Profiling of AMN082 in rat liver microsomes revealed rapid metabolism (t(1/2) < 1 min) to a major metabolite, N-benzhydrylethane-1,2-diamine (Met-1). In vitro selectivity profiling of Met-1 demonstrated physiologically relevant transporter binding affinity at serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) (323, 3020, and 3410 nM, respectively); whereas the parent compound AMN082 had appreciable affinity at NET (1385 nM). AMN082 produced antidepressant-like activity and receptor occupancy at SERT up to 4 h postdose, a time point at which AMN082 is significantly reduced in brain and plasma while the concentration of Met-1 continues to increase in brain. Acute Met-1 administration produced antidepressant-like activity as would be expected from its in vitro profile as a mixed SERT, NET, DAT inhibitor. Taken together, these data suggest that the reported in vivo actions of AMN082 should be interpreted with caution, because they may involve other mechanisms in addition to mGluR7.


Subject(s)
Benzhydryl Compounds/pharmacology , Biogenic Monoamines/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Benzhydryl Compounds/metabolism , Biogenic Monoamines/physiology , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Male , Mice , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
2.
Int J Neuropsychopharmacol ; 13(9): 1193-205, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20047711

ABSTRACT

Biogenic amines such as norepinephrine, dopamine, and serotonin play a well-described role in the treatment of mood disorders and some types of pain. As alpha2A-adrenoceptors regulate the release of these neurotransmitters, we examined the therapeutic potential of BRL 44408, a potent (Ki=8.5 nM) and selective (>50-fold) alpha2A-adrenoceptor antagonist (K(B)=7.9 nM). In rats, BRL 44408 penetrated the central nervous system resulting in peak brain and plasma concentrations of 586 ng/g and 1124 ng/ml, respectively. In a pharmacodynamic assay, pretreatment with BRL 44408 to rats responding under a fixed-ratio 30 operant response paradigm resulted in a rightward shift of the clonidine dose-response curve, an effect indicative of alpha2-adrenoceptor antagonism in vivo. Consistent with presynaptic autoreceptor antagonism and tonic regulation of neurotransmitter release, acute administration of BRL 44408 elevated extracellular concentrations of norepinephrine and dopamine, but not serotonin, in the medial prefrontal cortex. Additionally, BRL 44408, probably by inhibiting alpha2A heteroceptors, produced a significant increase in cortical levels of acetylcholine. In the forced swim test and schedule-induced polydipsia assay, BRL 44408 produced an antidepressant-like response by dose-dependently decreasing immobility time and adjunctive water intake, respectively, while in a model of visceral pain, BRL 44408 exhibited analgesic activity by decreasing para-phenylquinone (PPQ)-induced abdominal stretching. Finally, BRL 44408 did not produce deficits in overall motor coordination nor alter general locomotor activity. This preclinical characterization of the neurochemical and behavioural profile of BRL 44408 suggests that selective antagonism of alpha2A-adrenoceptors may represent an effective treatment strategy for mood disorders and visceral pain.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Analgesics/pharmacology , Antidepressive Agents/pharmacology , Depression/drug therapy , Imidazoles/pharmacology , Isoindoles/pharmacology , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Antagonists/pharmacokinetics , Analgesics/pharmacokinetics , Animals , Antidepressive Agents/pharmacokinetics , Biogenic Monoamines/metabolism , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Drug Evaluation, Preclinical , Imidazoles/pharmacokinetics , Isoindoles/pharmacokinetics , Male , Mice , Microdialysis , Radioligand Assay , Rats , Rats, Sprague-Dawley , Swimming , Thirst/drug effects
3.
J Pharmacol Toxicol Methods ; 59(2): 100-7, 2009.
Article in English | MEDLINE | ID: mdl-19121403

ABSTRACT

INTRODUCTION: The generation of new neurons occurs throughout adulthood in discrete brain regions, and may be regulated by neuropsychiatric diseases and therapeutic drug treatments. Most current methods that study this process measure the labeling of newborn cells by 5-bromo-2-deoxyuridine (BrdU) using immunohistochemical methods followed by the microscopic counting of BrdU positive cells. This method is time consuming and labor intensive, typically taking several weeks to analyze. METHODS: Therefore, we characterized a method to measure BrdU incorporation in the adult mouse hippocampus in vivo by using flow cytometry, which normally allows analysis of data within a single day. RESULTS: The present study compared multiple BrdU dosing and loading protocols to determine a dosing strategy that produced the best signal to noise ratio. BrdU incorporation was also compared across different brain regions. The method was sensitive to a number of experimental disease manipulations. Induction of type-1 diabetes and depletion of norepinephrine reduced hippocampal cell proliferation. In contrast, chronic administration of electroconvulsive shock, a somatic treatment for depression, as well as chronic treatment with the antidepressant fluoxetine elevated hippocampal cell proliferation. This increase in cell proliferation with fluoxetine was detected as early as 14 days into treatment. Moreover, comparing measures of cell proliferation obtained by immunohistochemical and flow cytometric methods within the same animals were convergent and significantly correlated to each other. Flow cytometry was also sufficiently sensitive to quantify the survival of newly born cells. DISCUSSION: These experiments validate the utility of flow cytometry in analyzing hippocampal cell proliferation and survival in a reliable and high-throughput fashion. The speedy analysis afforded by flow cytometry lends itself to be utilized in novel drug discovery and physiology.


Subject(s)
Bromodeoxyuridine/analysis , Diabetes Mellitus, Experimental/chemically induced , Flow Cytometry/methods , Neurogenesis/physiology , Animals , Antidepressive Agents/pharmacology , Benzylamines/toxicity , Brain/metabolism , Bromodeoxyuridine/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Fluoxetine/pharmacology , Hippocampus/cytology , Hippocampus/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Neurons/drug effects , Neurotoxins/toxicity , Norepinephrine/metabolism , Prosencephalon/chemistry , Reproducibility of Results , Sensitivity and Specificity , Selective Serotonin Reuptake Inhibitors/pharmacology , Stem Cells/drug effects , Time Factors
4.
Neuropeptides ; 41(5): 307-20, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17637475

ABSTRACT

Galanin's influence on monoaminergic neurotransmission, together with its discrete CNS distribution in corticolimbic brain areas, points to a potential role for this neuropeptide in mediating anxiety- and depression-like responses. To evaluate this hypothesis, the non-selective galanin receptor agonist, galnon, was tested in multiple preclinical models of anxiolytic- and antidepressive-like activity. Acute administration of galnon (0.03-1mg/kg, i.p.) dose-dependently increased punished crossings in the four plate test, with magnitude similar to the effects of the endogenous ligand, galanin (0.1-1.0 microg, i.c.v.). Moreover, the effects of galnon and galanin were blocked by central administration of the non-selective galanin receptor antagonist, M35 (10 microg, i.c.v.). Interestingly, the benzodiazepine receptor antagonist, flumazenil (1mg/kg, i.p.), reversed galnon's effect in the four plate test, implicating GABAergic neurotransmission as a potential mechanism underlying this anxiolytic-like response. In the elevated zero maze, galnon (0.3-3.0mg/kg, i.p.) and galanin (0.03-0.3 microg, i.c.v.) increased the time spent in the open arms, while in the stress-induced hyperthermia model, galnon (0.3-30 mg/kg, i.p.) attenuated stress-induced changes in body temperature. Consistent with these anxiolytic-like effects, in vivo microdialysis showed that acute galnon (3mg/kg, i.p.) treatment preferentially elevated levels of GABA in the rat amygdala, a brain area linked to fear and anxiety behaviors. In contrast to the effects in anxiety models, neither galnon (1-5.6 mg/kg, i.p.) nor galanin (0.3-3.0 microg, i.c.v.) demonstrated antidepressant-like effects in the mouse tail suspension test. Galnon (1-10mg/kg, i.p.) also failed to reduce immobility time in the rat forced swim test. In vitro, galnon and galanin showed affinity for human galanin receptors expressed in Bowes melanoma cells (K(i)=5.5 microM and 0.2 nM, respectively). Galanin displayed high affinity and functional potency for membranes expressing rat GALR1 receptors (K(i)=0.85 nM; EC(50)=0.6 nM), while galnon (10 microM) failed to displace radiolabeled galanin or inhibit cAMP production in the same GALR1 cell line. Galnon (10 microM) showed affinity for NPY1, NK2, M5, and somatostatin receptors but no affinity for galanin receptors expressed in rat hippocampal membranes. Taken together, the present series of studies demonstrate novel effects of galnon in various preclinical models of anxiety and highlight the galaninergic system as a novel therapeutic target for the treatment of anxiety-related disorders. Moreover, these data indicate rodent GALR1 receptors do not mediate galnon's in vivo activity.


Subject(s)
Anti-Anxiety Agents/pharmacology , Coumarins/pharmacology , Exploratory Behavior/physiology , Motivation , Receptors, Galanin/agonists , Animals , Body Temperature/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Habituation, Psychophysiologic , Male , Mice , Mice, Inbred BALB C , Microdialysis , Rats , Rats, Inbred WKY , Rats, Sprague-Dawley , Stress, Psychological/drug therapy , Swimming
5.
Methods Enzymol ; 389: 277-301, 2004.
Article in English | MEDLINE | ID: mdl-15313572

ABSTRACT

This article provides information on two screening platforms for the identification of regulators of G-protein signaling (RGS) protein modulators. Utilization of the yeast pheromone response pathway enabled the creation of a functional screen for RGS4 modulators. The RGSZ1-focused screen employs advances in yeast two-hybrid screening technologies and targets the protein-protein interface of the RGS domain/Galpha interaction. Moreover, the RGSZ1 screen provides the opportunity to multiplex the screening of two targets of interest, given the development of two different luciferase reporter genes that enabled sequential determination and intraassay controls. The screen formats were validated, implemented, and conducted as automated 384-well, liquid-based, high-throughput small molecule screens. Primary "hits" were confirmed using benchtop 96-well formats of these assays and advanced to in vitro functional evaluation assays. The yeast-based assay platforms provide robust cellular assays that result in the identification of small molecule modulators for both RGS targets. These molecules can serve both as tools with which to probe biological implications of RGS proteins and as potential starting points toward the development of novel modulators of G-protein signaling pathways. Such modulators may show potential for controlling and treating diseases resulting from inappropriate activity of G-protein signaling pathways.


Subject(s)
Drug Evaluation, Preclinical , Luciferases/analysis , Protein Isoforms/antagonists & inhibitors , RGS Proteins/antagonists & inhibitors , Two-Hybrid System Techniques , Amino Acid Sequence , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Genes, Reporter , Inhibitory Concentration 50 , Luciferases/genetics , Pheromones/metabolism , Promoter Regions, Genetic , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Tertiary , RGS Proteins/chemistry , RGS Proteins/genetics , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...