Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 16(2)2024 01 11.
Article in English | MEDLINE | ID: mdl-38128127

ABSTRACT

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byßcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletßcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingßcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Insulin/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism
2.
Toxicology ; 445: 152601, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32980478

ABSTRACT

Angiogenesis is a complex process that is required for development and tissue regeneration and it may be affected by many pathological conditions. Chemicals and drugs can impact formation and maintenance of the vascular networks; these effects may be both desirable (e.g., anti-cancer drugs) or unwanted (e.g., side effects of drugs). A number of in vivo and in vitro models exist for studies of angiogenesis and endothelial cell function, including organ-on-a-chip microphysiological systems. An arrayed organ-on-a-chip platform on a 96-well plate footprint that incorporates perfused microvessels, with and without tumors, was recently developed and it was shown that survival of the surrounding tissue was dependent on delivery of nutrients through the vessels. Here we describe a technology transfer of this complex microphysiological model between laboratories and demonstrate that reproducibility and robustness of these tissue chip-enabled experiments depend primarily on the source of the endothelial cells. The model was highly reproducible between laboratories and was used to demonstrate the advantages of the perfusable vascular networks for drug safety evaluation. As a proof-of-concept, we tested Fluorouracil (1-1,000 µM), Vincristine (1-1,000 nM), and Sorafenib (0.1-100 µM), in the perfusable and non-perfusable micro-organs, and in a colon cancer-containing micro-tumor model. Tissue chip experiments were compared to the traditional monolayer cultures of endothelial or tumor cells. These studies showed that human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. The data from the 3D models confirmed advantages of the physiological environment as compared to 2D cell cultures. We demonstrated how these models can be translated into practice by verifying that the endothelial cell source and passage are critical elements for establishing a perfusable model.


Subject(s)
Antineoplastic Agents/therapeutic use , Human Umbilical Vein Endothelial Cells/drug effects , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/pathology , HCT116 Cells , Human Umbilical Vein Endothelial Cells/physiology , Humans , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Organ Culture Techniques , Reproducibility of Results
3.
Tissue Eng Part C Methods ; 24(12): 697-708, 2018 12.
Article in English | MEDLINE | ID: mdl-30398401

ABSTRACT

Different approaches have investigated the effects of different extracellular matrices (ECMs) and three-dimensional (3D) culture on islet function, showing encouraging results. Ideally, the proper scaffold should mimic the biochemical composition of the native tissue as it drives numerous signaling pathways involved in tissue homeostasis and functionality. Tissue-derived decellularized biomaterials can preserve the ECM composition of the native tissue making it an ideal scaffold for 3D tissue engineering applications. However, the decellularization process may affect the retention of specific components, and the choice of a proper detergent is fundamental in preserving the native ECM composition. In this study, we evaluated the effect of different decellularization protocols on the mechanical properties and biochemical composition of pancreatic ECM (pECM) hydrogels. Fresh porcine pancreas tissue was harvested, cut into small pieces, rinsed in water, and treated with two different detergents (sodium dodecyl sulfate [SDS] or Triton X-100) for 1 day followed by 3 days in water. Effective decellularization was confirmed by PicoGreen assay, Hoescht, and H&E staining, showing no differences among groups. Use of a protease inhibitor (PI) was also evaluated. Effective decellularization was confirmed by PicoGreen assay and hematoxylin and eosin (H&E) staining, showing no differences among groups. Triton-treated samples were able to form a firm hydrogel under appropriate conditions, while the use of SDS had detrimental effects on the gelation properties of the hydrogels. ECM biochemical composition was characterized both in the fresh porcine pancreas and all decellularized pECM hydrogels by quantitative mass spectrometry analysis. Fibrillar collagen was the major ECM component in all groups, with all generated hydrogels having a higher amount compared with fresh pancreas. This effect was more pronounced in the SDS-treated hydrogels when compared with the Triton groups, showing very little retention of other ECM molecules. Conversely, basement membrane and matricellular proteins were better retained when the tissue was pretreated with a PI and decellularized in Triton X-100, making the hydrogel more similar to the native tissue. In conclusion, we showed that all the protocols evaluated in the study showed effective tissue decellularization, but only when the tissue was pretreated with a PI and decellularized in Triton detergent, the biochemical composition of the hydrogel was closer to the native tissue ECM. Impact Statement The article compares different methodologies for the generation of a pancreas-derived hydrogel for tissue engineering applications. The biochemical characterization of the newly generated hydrogel shows that the material retains all the extracellular molecules of the native tissue and is capable of sustaining functionality of the encapsulated beta-cells.


Subject(s)
Hydrogels/pharmacology , Pancreas/physiology , Tissue Engineering/methods , Animals , Cell Line , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fluorescence , Glucose/pharmacology , Glycosaminoglycans/metabolism , Insulin Secretion/drug effects , Pancreas/cytology , Pancreas/drug effects , Pepsin A/metabolism , Proteomics , Rats , Sulfates/metabolism , Swine , Tissue Survival/drug effects
4.
Angiogenesis ; 21(3): 425-532, 2018 08.
Article in English | MEDLINE | ID: mdl-29766399

ABSTRACT

The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.


Subject(s)
Biological Assay/methods , Neoplasms , Neovascularization, Pathologic , Animals , Biological Assay/instrumentation , Guidelines as Topic , Humans , Mice , Neoplasms/blood supply , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology
5.
Exp Biol Med (Maywood) ; 242(17): 1669-1678, 2017 11.
Article in English | MEDLINE | ID: mdl-28195514

ABSTRACT

The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.


Subject(s)
Blood-Brain Barrier/physiopathology , Brain/blood supply , Endothelium, Vascular/metabolism , Microchip Analytical Procedures/methods , Microtechnology/methods , Tissue Engineering/methods , Alzheimer Disease/pathology , Biological Transport/physiology , Glioblastoma/pathology , Humans , Lab-On-A-Chip Devices , Models, Biological , Multiple Sclerosis/pathology , Stroke/pathology
6.
Stem Cells ; 33(6): 1998-2010, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25788415

ABSTRACT

Neural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC proliferation and differentiation have been incompletely characterized to date. Since some neurodevelopmental brain disorders (Costello syndrome and Noonan syndrome) are caused by germline activating mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series of conditional-activated Ras molecule-expressing genetically engineered mouse strains, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, expression increases brain NSC growth in a Raf-dependent, but Mek-independent, manner. Moreover, we show that activated K-Ras regulation of brain NSC proliferation requires Raf binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish tissue-specific differences in activated Ras molecule regulation of brain cell growth that operate through a noncanonical mechanism.


Subject(s)
Brain/metabolism , Cell Differentiation/genetics , Cell Proliferation/physiology , Neural Stem Cells/cytology , Retinoblastoma Protein/metabolism , ras Proteins/metabolism , Animals , Cell Cycle/genetics , Mice , Signal Transduction/physiology
7.
JAMA ; 305(15): 1568-76, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21505135

ABSTRACT

CONTEXT: The identification of patients with inherited cancer susceptibility syndromes facilitates early diagnosis, prevention, and treatment. However, in many cases of suspected cancer susceptibility, the family history is unclear and genetic testing of common cancer susceptibility genes is unrevealing. OBJECTIVE: To apply whole-genome sequencing to a patient without any significant family history of cancer but with suspected increased cancer susceptibility because of multiple primary tumors to identify rare or novel germline variants in cancer susceptibility genes. DESIGN, SETTING, AND PARTICIPANT: Skin (normal) and bone marrow (leukemia) DNA were obtained from a patient with early-onset breast and ovarian cancer (negative for BRCA1 and BRCA2 mutations) and therapy-related acute myeloid leukemia (t-AML) and analyzed with the following: whole-genome sequencing using paired-end reads, single-nucleotide polymorphism (SNP) genotyping, RNA expression profiling, and spectral karyotyping. MAIN OUTCOME MEASURES: Structural variants, copy number alterations, single-nucleotide variants, and small insertions and deletions (indels) were detected and validated using the described platforms. RESULTS; Whole-genome sequencing revealed a novel, heterozygous 3-kilobase deletion removing exons 7-9 of TP53 in the patient's normal skin DNA, which was homozygous in the leukemia DNA as a result of uniparental disomy. In addition, a total of 28 validated somatic single-nucleotide variations or indels in coding genes, 8 somatic structural variants, and 12 somatic copy number alterations were detected in the patient's leukemia genome. CONCLUSION: Whole-genome sequencing can identify novel, cryptic variants in cancer susceptibility genes in addition to providing unbiased information on the spectrum of mutations in a cancer genome.


Subject(s)
Genes, p53/genetics , Genetic Predisposition to Disease , Leukemia, Myeloid, Acute/genetics , Sequence Analysis, DNA , Sequence Deletion , Adult , Age of Onset , Breast Neoplasms/therapy , Cystadenocarcinoma, Serous/therapy , DNA, Neoplasm/genetics , Female , Genome, Human/genetics , Humans , Leukemia, Myeloid, Acute/etiology , Ovarian Neoplasms/therapy , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...