Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
An Acad Bras Cienc ; 95(suppl 3): e20211442, 2023.
Article in English | MEDLINE | ID: mdl-37820122

ABSTRACT

Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Archaea/genetics , Microbiota/genetics , Soil
2.
Sci Rep ; 13(1): 12782, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550336

ABSTRACT

Continental slopes can play a significant contribution to marine productivity and carbon cycling. These regions can harbour distinct geological features, such as salt diapirs and pockmarks, in which their depressions may serve as natural sediment traps where different compounds can accumulate. We investigated the prokaryotic communities in surface (0-2 cm) and subsurface (18-20 or 22-24 cm) sediments from a salt diapir and pockmark field in Santos Basin, Southwest Atlantic Ocean. Metabarcoding of 16 samples revealed that surface sediments were dominated by the archaeal class Nitrososphaeria, while the bacterial class Dehalococcoidia was the most prevalent in subsurface samples. Sediment strata were found to be a significant factor explaining 27% of the variability in community composition. However, no significant difference was observed among geomorphological features. We also performed a metagenomic analysis of three surface samples and analysed the highest quality metagenome-assembled genome retrieved, which belonged to the family CSP1-5, phylum Methylomirabilota. This non-methanotrophic methylotroph contains genes encoding for methanol oxidation and Calvin Cycle pathways, along with diverse functions that may contribute to its adaptation to deep-sea habitats and to oscillating environmental conditions. By integrating metabarcoding and metagenomic approaches, we reported that CSP1-5 is prevalent in the sediment samples from Santos Basin slope, indicating the potential importance of methanol metabolism in this region. Finally, using a phylogenetic approach integrating 16S rRNA sequences assigned to Methylomirabilota in this study with those from a public database, we argued that CSP1-5 public sequences might be misclassified as Methylomirabilaceae (the methanotrophic clade) and, therefore, the role of these organisms and the methanol cycling could also be neglected in other environments.


Subject(s)
Geologic Sediments , Methanol , Methanol/metabolism , Geologic Sediments/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Prokaryotic Cells , Bacteria , Archaea
3.
An Acad Bras Cienc ; 94(suppl 1): e20210621, 2022.
Article in English | MEDLINE | ID: mdl-35508019

ABSTRACT

Antarctic active volcanoes can disperse pyroclastic minerals at long distances, transporting nutrients and microorganisms to the surrounding glacial environment. The sedimented volcanic materials - called tephras - may interact with glacier ice and produce a unique environment for microbial life. This study aimed to describe the microbial community structure of an Antarctic glacier ice with tephra layers in terms of its taxonomic and functional diversity. Ice samples from Collins Glacier (King George Island) containing tephra layers of Deception Island volcano were analyzed by a whole shotgun metagenomic approach. Taxonomic analysis revealed a highly diverse community dominated by phyla Bacteroidetes, Cyanobacteria and Proteobacteria. The dominant genera were Chitinophaga (13%), Acidobacterium (8%), and Cyanothece (4%), being all of these known to include psychrotolerant and psychrophilic strains. Functional diversity analysis revealed almost complete carbon, nitrogen and sulfur biogeochemical cycles. Carbohydrate metabolism of the ice-tephra community uses both organic and inorganic carbon inputs, where photosynthesis plays an important role through CO2 fixation. Our results also demonstrate a biotechnological potential for this glacial community, with functional annotations for styrene degradation and carotenoid pigment genes. Future metatranscriptomic studies shall further reveal the active strategies and the biotechnology potential of extremophiles from this unique ice-tephra microbial community.


Subject(s)
Cyanobacteria , Microbiota , Antarctic Regions , Carbon , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
4.
Astrobiology ; 22(3): 293-312, 2022 03.
Article in English | MEDLINE | ID: mdl-34694925

ABSTRACT

Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.


Subject(s)
Metagenome , Microbiota , Brazil , Caves/microbiology , Metagenomics , Microbiota/genetics , Phylogeny
5.
Extremophiles ; 22(6): 917-929, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30109444

ABSTRACT

Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.


Subject(s)
Ice Cover/microbiology , Microbiota , Thermotolerance , Volcanic Eruptions , Antarctic Regions , Bacteria/genetics , Bacteria/isolation & purification , Extreme Environments , Islands
6.
Front Microbiol ; 9: 899, 2018.
Article in English | MEDLINE | ID: mdl-29867810

ABSTRACT

Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

7.
Front Microbiol ; 8: 1346, 2017.
Article in English | MEDLINE | ID: mdl-28769908

ABSTRACT

Uncultured microorganisms comprise most of the microbial diversity existing on our planet. Despite advances in environmental sequencing and single-cell genomics, in-depth studies about bacterial metabolism and screening of novel bioproducts can only be assessed by culturing microbes in the laboratory. Here we report uncultured, or recalcitrant, microorganisms from an Antarctic soil sample, using relatively simple methods: oligotrophic media, extended incubation periods, observation under stereo microscopy, and selection of slow-growing bacteria. We managed to isolate several rare microorganisms belonging to infrequently isolated or recently described genera, for example Lapillicoccus, Flavitalea, Quadrisphaera, Motilibacter, and Polymorphobacter. Additionally, we obtained isolates presenting 16S rRNA sequence similarity ranging from 92.08 to 94.46% with any other known cultured species, including two distinct isolates from the class Thermoleophilia, that although common in Antarctic soils (as identified by metagenomics), was never reported to be isolated from such samples. Our data indicates that simple methods are still useful for cultivating recalcitrant microorganisms, even when dealing with samples from extreme environments.

8.
Astrobiology ; 13(3): 303-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23469863

ABSTRACT

Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas.


Subject(s)
Community-Institutional Relations , Exhibitions as Topic , Exobiology/education , Extraterrestrial Environment , Life , Research Design , Travel
9.
Electron. j. biotechnol ; 15(3): 8-8, May 2012. ilus, tab
Article in English | LILACS | ID: lil-640552

ABSTRACT

Background: Unlike petroleum-based synthetic plastics, biodegradable biopolymer generation from industrial residue is a key strategy to reduce costs in the production process, as well as in the waste management, since efficient industrial wastewater treatment could be costly. In this context, the present work describes the prospection and use of bacterial strains capable to bioconvert cassava starch by-product into biodegradable polyhydroxyalkanoates (PHAs). Results: The first step of this study was the bacterial competence screening which was conducted with 72 strains covering 21 Bacillus and related species. The microorganism growth in a medium with a starch substrate was measured by an innovative MTT assay, while the ability of the bacteria to secrete amylase and produce PHA was evaluated by the Nile Red Dye method. Based on growth and potential for PHA production, four isolates were selected and identified as Bacillus megaterium by 16S rRNA sequencing. When cultivated in hydrolyzed cassava starch by-product, maximum production reached 4.97 g dry biomass/L with 29.7 percent of Poly-(3-hydroxybutyrate) (characterized by FTIR). Conclusions: MTT assay proved to be a reliable methodology for monitoring bacterial growth in insoluble media. Selected amylolytic strains could be used as an alternative industrial process for biodegradable plastics production from starchy residues, reducing costs for biodegradable biopolymer production and wastewater treatment operations.


Subject(s)
Bacillus megaterium , Biodegradable Plastics , Polyhydroxyalkanoates , Starch , Biopolymers , Biotransformation , Tetrazolium Salts , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...