Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 9: e11246, 2021.
Article in English | MEDLINE | ID: mdl-33981501

ABSTRACT

Movement behavior is an important aspect of animal ecology but is challenging to study in species that are unobservable for some portion of their lives, such as those inhabiting subterranean environments. Using four years of robust-design capture-recapture data, we examined the probability of movement into subterranean habitat by a population of endangered Barton Springs salamanders (Eurycea sosorum), a species that inhabits both surface and subterranean groundwater habitats. We tested the effects of environmental variables and body size on survival and temporary emigration, using the latter as a measure of subterranean habitat use. Based on 2,046 observations of 1,578 individuals, we found that temporary emigration was higher for larger salamanders, 79% of which temporarily emigrated into subterranean habitat between primary sampling intervals, on average. Body size was a better predictor of temporary emigration and survival compared to environmental covariates, although coefficients from lower ranked models suggested turbidity and dissolved oxygen may influence salamander movement between the surface and subsurface. Surface population dynamics are partly driven by movement below ground and therefore surface abundance estimates represent a fraction of the superpopulation. As such, while surface habitat management remains an important conservation strategy for this species, periodic declines in apparent surface abundance do not necessarily indicate declines of the superpopulation associated with the spring habitat.

2.
Ecol Evol ; 8(11): 5912-5923, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938103

ABSTRACT

Understanding population change is essential for conservation of imperiled species, such as amphibians. Worldwide amphibian declines have provided an impetus for investigating their population dynamics, which can involve both extrinsic (density-independent) and intrinsic (density-dependent) drivers acting differentially across multiple life stages or age classes. In this study, we examined the population dynamics of the endangered Barton Springs Salamander (Eurycea sosorum) using data from a long-term monitoring program. We were interested in understanding both the potential environmental drivers (density-independent factors) and demographic factors (interactions among size classes, negative density dependence) to better inform conservation and management activities. We used data from three different monitoring regimes and multivariate autoregressive state-space models to quantify environmental effects (seasonality, discharge, algae, and sediment cover), intraspecific interactions among three size classes, and intra-class density dependence. Results from our primary data set revealed similar patterns among sites and size classes and were corroborated by our out-of-sample data. Cross-correlation analysis showed juvenile abundance was most strongly correlated with a 9-month lag in aquifer discharge, which we suspect is related to inputs of organic carbon into the aquifer. However, sedimentation limited juvenile abundance at the surface, emphasizing the importance of continued sediment management. Recruitment from juveniles to the sub-adult size class was evident, but negative density-dependent feedback ultimately regulated each size class. Negative density dependence may be an encouraging sign for the conservation of E. sosorum because populations that can reach carrying capacity are less likely to go extinct compared to unregulated populations far below their carrying capacity. However, periodic population declines coupled with apparent migration into the aquifer complicate assessments of species status. Although both density-dependent and density-independent drivers of population change are not always apparent in time series of animal populations, both have important implications for conservation and management of E. sosorum.

3.
Ecol Evol ; 7(13): 5002-5015, 2017 07.
Article in English | MEDLINE | ID: mdl-28690826

ABSTRACT

Insights into the ecology and natural history of the neotenic salamander, Eurycea tonkawae, are provided from eight years of capture-recapture data from 10,041 captures of 7,315 individuals at 16 sites. Eurycea tonkawae exhibits seasonal reproduction, with peak gravidity occurring in the fall and winter. Size frequency data indicated recruitment occurred in the spring and summer. Open-population capture-recapture models revealed a similar seasonal pattern at two of three sites, while recruitment was dependent on flow at the third site. Females can reach sexual maturity within one year, and oviposition likely takes place below ground. The asymptotic body length of 1,290 individuals was estimated as 31.73 mm (at ca. two years of age), although there was substantial heterogeneity among growth trajectories. Longevity was approximately eight years, and the median age for a recaptured adult was 2.3 years. Abundance estimated from closed-population and robust-design capture-recapture models varied widely within and among sites (range 41-834), although, surprisingly, dramatic changes in abundance were not observed following prolonged dry periods. Seasonal migration patterns of second-year and older adults may help explain lower ratios of large individuals and higher temporary emigration during the latter half of the year, but further study is required. Low numbers of captures and recaptures precluded the use of open-population models to estimate demographic parameters at several sites; therefore, closed-population (or robust-design) methods are generally recommended. Based on observations of their life history and population demographics, E. tonkawae seems well adapted to conditions where spring flow is variable and surface habitat periodically goes dry.

4.
PeerJ ; 4: e1817, 2016.
Article in English | MEDLINE | ID: mdl-26998413

ABSTRACT

Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae) and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence), although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.

5.
BMC Evol Biol ; 13: 201, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-24044519

ABSTRACT

BACKGROUND: Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. RESULTS: Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. CONCLUSIONS: The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof.


Subject(s)
Ecosystem , Phylogeography , Urodela/classification , Urodela/genetics , Animals , Biological Evolution , Caves , DNA, Mitochondrial/genetics , Gene Flow , Genetic Speciation , Genetic Variation , Haplotypes , Texas , Urodela/anatomy & histology
6.
PLoS One ; 8(3): e59424, 2013.
Article in English | MEDLINE | ID: mdl-23555669

ABSTRACT

Despite recognition that nearly one-third of the 6300 amphibian species are threatened with extinction, our understanding of the general ecology and population status of many amphibians is relatively poor. A widely-used method for monitoring amphibians involves injecting captured individuals with unique combinations of colored visible implant elastomer (VIE). We compared VIE identification to a less-invasive method - computer-assisted photographic identification (photoID) - in endangered Jollyville Plateau salamanders (Eurycea tonkawae), a species with a known range limited to eight stream drainages in central Texas. We based photoID on the unique pigmentation patterns on the dorsal head region of 1215 individual salamanders using identification software Wild-ID. We compared the performance of photoID methods to VIEs using both 'high-quality' and 'low-quality' images, which were taken using two different camera types and technologies. For high-quality images, the photoID method had a false rejection rate of 0.76% compared to 1.90% for VIEs. Using a comparable dataset of lower-quality images, the false rejection rate was much higher (15.9%). Photo matching scores were negatively correlated with time between captures, suggesting that evolving natural marks could increase misidentification rates in longer term capture-recapture studies. Our study demonstrates the utility of large-scale capture-recapture using photo identification methods for Eurycea and other species with stable natural marks that can be reliably photographed.


Subject(s)
Biometric Identification/methods , Endangered Species , Image Processing, Computer-Assisted/statistics & numerical data , Photography/veterinary , Urodela/physiology , Animals , Biocompatible Materials/chemistry , Biometric Identification/instrumentation , Conservation of Natural Resources , Ecosystem , Elastomers/chemistry , Photography/methods , Pigmentation/physiology , Texas , Urodela/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...