Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(43): e2200405119, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36256805

ABSTRACT

The magnetotransport behavior inside the nematic phase of bulk FeSe reveals unusual multiband effects that cannot be reconciled with a simple two-band approximation proposed by surface-sensitive spectroscopic probes. In order to understand the role played by the multiband electronic structure and the degree of two-dimensionality, we have investigated the electronic properties of exfoliated flakes of FeSe by reducing their thickness. Based on magnetotransport and Hall resistivity measurements, we assess the mobility spectrum that suggests an unusual asymmetry between the mobilities of the electrons and holes, with the electron carriers becoming localized inside the nematic phase. Quantum oscillations in magnetic fields up to 38 T indicate the presence of a hole-like quasiparticle with a lighter effective mass and a quantum scattering time three times shorter, as compared with bulk FeSe. The observed localization of negative charge carriers by reducing dimensionality can be driven by orbitally dependent correlation effects, enhanced interband spin fluctuations, or a Lifshitz-like transition, which affect mainly the electron bands. The electronic localization leads to a fragile two-dimensional superconductivity in thin flakes of FeSe, in contrast to the two-dimensional high-[Formula: see text] induced with electron doping via dosing or using a suitable interface.

2.
Nanoscale ; 14(19): 7250-7261, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35521741

ABSTRACT

Condensed phases of molecular hydrogen (H2) are highly desired for clean energy applications ranging from hydrogen storage to nuclear fusion and superconductive energy storage. However, in bulk hydrogen, such dense phases typically only form at exceedingly low temperatures or extremely high (typically hundreds of GPa) pressures. Here, confinement of H2 within nanoporous materials is shown to significantly manipulate the hydrogen phase diagram leading to preferential stabilization of unusual crystalline H2 phases. Using pressure and temperature-dependent neutron scattering at pressures between 200-2000 bar (0.02-0.2 GPa) and temperatures between 10-77 K to map out the phase diagram of H2 when confined inside both meso- and microporous carbons, we conclusively demonstrate the preferential stabilisation of face-centred cubic (FCC) solid ortho-H2 in microporous carbons, at temperatures five times higher than would be possible in bulk H2. Through examination of nanoconfined H2 rotational dynamics, preferential adsorption and spin trapping of ortho-H2, as well as the loss of rotational energy and severe restriction of rotational degrees of freedom caused by the unique micropore environments, are shown to result in changes to phase behaviour. This work provides a general strategy for further manipulation of the H2 phase diagram via nanoconfinement effects, and for tuning of anisotropic potential through control of confining material composition and pore size. This approach could potentially provide lower energy routes to the formation and study of more exotic non-equilibrium condensed phases of hydrogen that could be useful for a wide range of energy applications.

3.
Nano Lett ; 21(16): 6725-6731, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34428907

ABSTRACT

We demonstrate the formation of both Josephson junctions and superconducting quantum interference devices (SQUIDs) using a dry transfer technique to stack and deterministically misalign mechanically exfoliated flakes of NbSe2. The current-voltage characteristics of the resulting twisted NbSe2-NbSe2 junctions are found to be sensitive to the misalignment angle of the crystallographic axes, opening up a new control parameter for optimization of the device performance, which is not available in thin-film-deposited junctions. A single lithographic process has then been implemented to shape Josephson junctions into SQUID geometries with typical loop areas of ∼25 µm2 and weak links ∼600 nm wide. At T = 3.75 K in an applied magnetic field, these devices display large stable current and voltage modulation depths of up to ΔIc ∼ 75% and ΔV ∼ 1.4 mV, respectively.

4.
J Phys Condens Matter ; 33(24)2021 May 18.
Article in English | MEDLINE | ID: mdl-33853045

ABSTRACT

Hall sensors have become one of the most used magnetic sensors in recent decades, performing the vital function of providing a magnetic sense that is naturally absent in humans. Various electronic applications have evolved from circuit-integrated Hall sensors due to their low cost, simple linear magnetic field response, ability to operate in a large magnetic field range, high magnetic sensitivity and low electronic noise, in addition to many other advantages. Recent developments in the fabrication and performance of graphene Hall devices promise to open up the realm of Hall sensor applications by not only widening the horizon of current uses through performance improvements, but also driving Hall sensor electronics into entirely new areas. In this review paper we describe the evolution from the traditional selection of Hall device materials to graphene Hall devices, and explore the various applications enabled by them. This includes a summary of the selection of materials and architectures for contemporary micro-to nanoscale Hall sensors. We then turn our attention to introducing graphene and its remarkable physical properties and explore how this impacts the magnetic sensitivity and electronic noise of graphene-based Hall sensors. We summarise the current state-of-the art of research into graphene Hall probes, demonstrating their record-breaking performance. Building on this, we explore the various new application areas graphene Hall sensors are pioneering such as magnetic imaging and non-destructive testing. Finally, we look at recent encouraging results showing that graphene Hall sensors have plenty of room to improve, before then discussing future prospects for industry-level scalable fabrication.

5.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922201

ABSTRACT

The high critical current density of second-generation high-temperature superconducting (2G-HTS) tapes is the result of the systematic optimisation of the pinning landscape for superconducting vortices through careful engineering of the size and density of defects and non-superconducting second phases. Here, we use scanning Hall probe microscopy to conduct a vortex-resolved study of commercial GdBaCuO tapes in low fields for the first time and complement this work with "local" magnetisation and transport measurements. Magnetic imaging reveals highly disordered vortex patterns reflecting the presence of strong pinning from a dense distribution of nanoscale Gd2O3 second-phase inclusions in the superconducting film. However, we find that the measured vortex profiles are unexpectedly broad, with full-width-half-maxima typically of 6 µm, and exhibit almost no temperature dependence in the range 10-85 K. Since the lateral displacements of pinned vortex cores are not expected to exceed the superconducting layer thickness, this suggests that the observed broadening is caused by the disruption of the circulating supercurrents due to the high density of nanoscale pinning sites. Deviations of our local magnetisation data from an accepted 2D Bean critical state model also indicate that critical state profiles relax quite rapidly by flux creep. Our measurements provide important information about the role second-phase defects play in enhancing the critical current in these tapes and demonstrate the power of magnetic imaging as a complementary tool in the optimisation of vortex pinning phenomena in 2G-HTS tapes.

6.
Sci Rep ; 9(1): 14424, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31594970

ABSTRACT

A major challenge to routine non-invasive, nanoscale magnetic imaging is the development of Hall sensors that are stable under ambient conditions and retain low minimum detectable fields down to nanoscale dimensions. To address these issues we have fabricated and characterised chemical vapour deposition (CVD) graphene Hall sensors with wire widths between 50 nm and 1500 nm, in order to exploit the high carrier mobility and tuneability of this material. The measured Hall voltage noise is in good agreement with theoretical models and we demonstrate that minimum detectable fields at fixed drive current are lowest in the vicinity of the charge neutrality point. Our best performing deep sub-micron sensors, based on a wire width of 85 nm, display the excellent room temperature resolution of 59 µT/√Hz at a dc drive current of 12 µA and measurement frequency of 531 Hz. We observe a weak increase in minimum detectable field as the active sensor area is reduced while the Hall offset field is largely independent of size. These figures-of-merit significantly surpass prior results on larger probes in competing materials systems, with considerable scope for further optimisation. Our results clearly demonstrate the feasibility of using CVD graphene to realise very high spatial resolution nanosensors for quantitative room temperature magnetic imaging.

7.
Sci Rep ; 7(1): 5145, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698655

ABSTRACT

ReSe2 and ReS2 are unusual compounds amongst the layered transition metal dichalcogenides as a result of their low symmetry, with a characteristic in-plane anisotropy due to in-plane rhenium 'chains'. They preserve inversion symmetry independent of the number of layers and, in contrast to more well-known transition metal dichalcogenides, bulk and few-monolayer Re-TMD compounds have been proposed to behave as electronically and vibrational decoupled layers. Here, we probe for the first time the electronic band structure of bulk ReSe2 by direct nanoscale angle-resolved photoemission spectroscopy. We find a highly anisotropic in- and out-of-plane electronic structure, with the valence band maxima located away from any particular high-symmetry direction. The effective mass doubles its value perpendicular to the Re chains and the interlayer van der Waals coupling generates significant electronic dispersion normal to the layers. Our density functional theory calculations, including spin-orbit effects, are in excellent agreement with these experimental findings.

8.
Sci Rep ; 7: 45182, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338048

ABSTRACT

High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

9.
ACS Nano ; 8(11): 11154-64, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25365239

ABSTRACT

Rhenium diselenide (ReSe2) is a layered indirect gap semiconductor for which micromechanical cleavage can produce monolayers consisting of a plane of rhenium atoms with selenium atoms above and below. ReSe2 is unusual among the transition-metal dichalcogenides in having a low symmetry; it is triclinic, with four formula units per unit cell, and has the bulk space group P1̅. Experimental studies of Raman scattering in monolayer, few-layer, and bulk ReSe2 show a rich spectrum consisting of up to 16 of the 18 expected lines with good signal strength, pronounced in-plane anisotropy of the intensities, and no evidence of degradation of the sample during typical measurements. No changes in the frequencies of the Raman bands with layer thickness down to one monolayer are observed, but significant changes in relative intensity of the bands allow the determination of crystal orientation and of monolayer regions. Supporting theory includes calculations of the electronic band structure and Brillouin zone center phonon modes of bulk and monolayer ReSe2 as well as the Raman tensors determining the scattering intensity of each mode. It is found that, as for other transition-metal dichalcogenides, Raman scattering provides a powerful diagnostic tool for studying layer thickness and also layer orientation in few-layer ReSe2.

10.
Phys Rev Lett ; 109(19): 197003, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215418

ABSTRACT

We describe investigations of the largely unexplored field of mesoscopic type-I superconductors. Micromagnetometry and 3D Ginzburg-Landau simulations of our single crystal ß-tin samples in this regime reveal size- and temperature-dependent supercritical fields whose behavior is radically different from the bulk critical field H(c)(B). We find that complete suppression of the intermediate state in medium-size samples can result in a surprising reduction of the critical field significantly below H(c)(B). We also reveal an evolution of the superconducting-to-normal phase transition from the expected irreversible first order at low temperatures through the previously unobserved reversible first-order to a second-order transition close to T(c), where the critical field can be many times larger than H(c)(B). Finally, we have identified striking correlations between the mesoscopic H(c3) for nucleation of surface superconductivity and the thermodynamic H(c) near T(c). All these observations are entirely unexpected in the conventional type-I picture.

11.
Langmuir ; 28(16): 6514-9, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22486421

ABSTRACT

Ferrocene-decorated cellulose nanowhiskers were prepared by the grafting of ethynylferrocene onto azide functionalized cotton-derived cellulose nanowhiskers using azide-alkyne cycloaddition. Successful surface modification and retention of the crystalline morphology of the nanocrystals was confirmed by elemental analysis, inductively coupled plasma-atomic emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The coverage with ferrocenyl is high (approximately 1.14 × 10(-3) mol g(-1) or 4.6 × 10(13) mol cm(-2) corresponding to a specific area of 61 Å(2) per ferrocene). Cyclic voltammetry measurements of films formed by deposition of ferrocene-decorated nanowhiskers showed that this small spacing of redox centers along the nanowhisker surface allowed conduction hopping of electrons. The apparent diffusion coefficient for electron (or hole) hopping via Fe(III/II) surface sites is estimated as Dapp = 10(-19) m(2)s(-1) via impedance methods, a value significantly less than nonsolvated ferrocene polymers, which would be expected as the 1,2,3-triazole ring forms a rigid linker tethering the ferrocene to the nanowhisker surface. In part, this is believed to be also due to "bottleneck" diffusion of charges across contact points where individual cellulose nanowhiskers contact each other. However, the charge-communication across the nanocrystal surface opens up the potential for use of cellulose nanocrystals as a charge percolation template for the preparation of conducting films via covalent surface modification (with applications similar to those using adsorbed conducting polymers), for use in bioelectrochemical devices to gently transfer and remove electrons without the need for a solution-soluble redox mediator, or for the fabrication of three-dimensional self-assembled conducting networks.


Subject(s)
Cellulose/chemistry , Ferrous Compounds/chemistry , Nanoparticles/chemistry , Cellulose/chemical synthesis , Cyclization , Electrochemical Techniques , Metallocenes , Molecular Structure , Particle Size , Surface Properties
12.
Phys Chem Chem Phys ; 13(20): 9857-62, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21499622

ABSTRACT

In this report we demonstrate a versatile (and potentially low-cost) cellulose nano-whisker-based surface carbonisation method that allows well-defined films of TiO(2) nanoparticles surface-modified with carbon to be obtained. In a layer-by-layer electrostatic deposition process based on TiO(2) nanoparticles, cellulose nano-whiskers, and poly(diallyl-dimethylammonium) or PDDA are employed to control the ratio of surface carbon to TiO(2). Characterisation based on optical, AFM, XRD, and XPS methods is reported. Electrochemical measurements suggest improved access to surface states, dopamine binding at the anatase surface, and surface redox cycling aided by the thin amorphous carbon film in mesoporous TiO(2). In future, the amorphous carbon layer method could be applied for surface processes for a wider range of semiconductor or insulator surfaces.

13.
Langmuir ; 25(19): 11228-31, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19788205

ABSTRACT

We have performed real-time atomic force microscopy (AFM) imaging of bismuth crystals that were grown under electrochemical control at low overpotentials to ensure a slow growth rate and allow in situ observation of the growth. A two step chronoamperometric potential was applied to a boron-doped diamond (BDD) working electrode with a short high overpotential, -0.4 V (2 s), to nucleate the bismuth, and then a long low overpotential for slow growth, -0.32 V (4.4 h). Growth rates of individual crystals and detailed growth mechanisms could be followed in real time because of the slow crystal growth. The close proximity of the AFM tip and tip holder to the working electrode appears to hinder the diffusion of bismuth to the BDD surface, as evidenced by the significantly lower density of crystals under the cantilever as compared to the rest of the electrode, therefore slowing down the growth process.

14.
Nat Mater ; 5(4): 305-11, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16532001

ABSTRACT

Initially inspired by biological motors, new types of nanodevice have been proposed for controlling the motion of nanoparticles. Structures incorporating spatially asymmetric potential profiles (ratchet substrates) have been realized experimentally to manipulate vortices in superconductors, particles in asymmetric silicon pores, as well as charged particles through artificial pores and arrays of optical tweezers. Using theoretical ideas, we demonstrate experimentally how to guide flux quanta in layered superconductors using a drive that is asymmetric in time instead of being asymmetric in space. By varying the time-asymmetry of the drive, we are able experimentally to increase or decrease the density of magnetic flux at the centre of superconducting samples that have no spatial ratchet substrate. This is the first ratchet without a ratchet potential. The experimental results can be well described by numerical simulations considering the dragging effect of two types of vortices penetrating layered superconductors in tilted magnetic fields.


Subject(s)
Biophysics/methods , Magnetics , Motion , Computer Simulation , Electromagnetic Fields , Models, Biological , Models, Statistical , Models, Theoretical , Stochastic Processes , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...