Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(1): 150-160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177304

ABSTRACT

Temperate Bacillus phages often utilize arbitrium communication to control lysis/lysogeny decisions, but the mechanisms by which this control is exerted remains largely unknown. Here we find that the arbitrium system of Bacillus subtilis phage ϕ3T modulates the host-encoded MazEF toxin-antitoxin system to this aim. Upon infection, the MazF ribonuclease is activated by three phage genes. At low arbitrium signal concentrations, MazF is inactivated by two phage-encoded MazE homologues: the arbitrium-controlled AimX and the later-expressed YosL proteins. At high signal, MazF remains active, promoting lysogeny without harming the bacterial host. MazF cleavage sites are enriched on transcripts of phage lytic genes but absent from the phage repressor in ϕ3T and other Spß-like phages. Combined with low activation levels of MazF during infections, this pattern explains the phage-specific effect. Our results show how a bacterial toxin-antitoxin system has been co-opted by a phage to control lysis/lysogeny decisions without compromising host viability.


Subject(s)
Antitoxins , Bacillus Phages , Toxin-Antitoxin Systems , Lysogeny , Toxin-Antitoxin Systems/genetics , Bacillus Phages/physiology , Virus Latency
2.
PLoS Biol ; 14(2): e1002386, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26927849

ABSTRACT

Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.


Subject(s)
Bacillus subtilis/physiology , Biological Evolution , Models, Genetic , Quorum Sensing , Vibrio/physiology , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...