Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 38(4): 1799-1805, 2024.
Article in English | MEDLINE | ID: mdl-38936941

ABSTRACT

BACKGROUND/AIM: The management of patients with clear cell renal cell carcinoma (ccRCC) includes prognosis assessment based on TNM classification and biochemical markers. This approach stratifies patients with advanced ccRCC into groups of favorable, intermediate, and poor prognosis. The aim of the study was to improve prognosis estimation using microRNAs involved in the pathogenesis of ccRCC. PATIENTS AND METHODS: The study was based on a histologically-verified set of matched ccRCC FFPE tissue samples (normal renal tissue, primary tumor, metastasis, n=20+20+20). The expression of 2,549 microRNAs was analyzed using the SurePrint G3 Human miRNA microarray kit (Agilent Technologies). Prognostic value of significantly deregulated microRNAs was further evaluated on microRNA expression and clinical data of 475 patients obtained from TCGA Kidney Clear Cell Carcinoma (KIRC) database. RESULTS: There were 13 up-regulated and 6 down-regulated microRNAs in tumor tissues compared to control tissues. Among them, survival analysis revealed those with prognostic significance. Patients with high expression of miR-21, miR-27a, miR-34a, miR-106b, miR-210, and miR-342 showed significantly unfavorable outcome. The opposite was observed for miR-30e, patients with low expression had significantly shorter survival. CONCLUSION: The inclusion of these microRNAs in a prognostic panel holds the potential to enhance stratification scoring systems, on which the treatment of ccRCC patients is based.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/metabolism , MicroRNAs/genetics , Prognosis , Male , Female , Biomarkers, Tumor/genetics , Middle Aged , Aged , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Kidney Neoplasms/metabolism , Neoplasm Staging , Up-Regulation , Adult , Kaplan-Meier Estimate , Aged, 80 and over
2.
Front Microbiol ; 15: 1324403, 2024.
Article in English | MEDLINE | ID: mdl-38903788

ABSTRACT

Microbiome research has gained much attention in recent years as the importance of gut microbiota in regulating host health becomes increasingly evident. However, the impact of radiation on the microbiota in the murine bone marrow transplantation model is still poorly understood. In this paper, we present key findings from our study on how radiation, followed by bone marrow transplantation with or without T cell depletion, impacts the microbiota in the ileum and caecum. Our findings show that radiation has different effects on the microbiota of the two intestinal regions, with the caecum showing increased interindividual variation, suggesting an impaired ability of the host to regulate microbial symbionts, consistent with the Anna Karenina principle. Additionally, we observed changes in the ileum composition, including an increase in bacterial taxa that are important modulators of host health, such as Akkermansia and Faecalibaculum. In contrast, radiation in the caecum was associated with an increased abundance of several common commensal taxa in the gut, including Lachnospiraceae and Bacteroides. Finally, we found that high doses of radiation had more substantial effects on the caecal microbiota of the T-cell-depleted group than that of the non-T-cell-depleted group. Overall, our results contribute to a better understanding of the complex relationship between radiation and the gut microbiota in the context of bone marrow transplantation and highlight the importance of considering different intestinal regions when studying microbiome responses to environmental stressors.

3.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38730559

ABSTRACT

The gut microbiota of vertebrates is acquired from the environment and other individuals, including parents and unrelated conspecifics. In the laboratory mouse, a key animal model, inter-individual interactions are severely limited and its gut microbiota is abnormal. Surprisingly, our understanding of how inter-individual transmission impacts house mouse gut microbiota is solely derived from laboratory experiments. We investigated the effects of inter-individual transmission on gut microbiota in two subspecies of house mice (Mus musculus musculus and M. m. domesticus) raised in a semi-natural environment without social or mating restrictions. We assessed the correlation between microbiota composition (16S rRNA profiles), social contact intensity (microtransponder-based social networks), and mouse relatedness (microsatellite-based pedigrees). Inter-individual transmission had a greater impact on the lower gut (colon and cecum) than on the small intestine (ileum). In the lower gut, relatedness and social contact independently influenced microbiota similarity. Despite female-biased parental care, both parents exerted a similar influence on their offspring's microbiota, diminishing with the offspring's age in adulthood. Inter-individual transmission was more pronounced in M. m. domesticus, a subspecies, with a social and reproductive network divided into more closed modules. This suggests that the transmission magnitude depends on the social and genetic structure of the studied population.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/genetics , Mice , Female , RNA, Ribosomal, 16S/genetics , Male , Microsatellite Repeats , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
4.
FEMS Microbiol Ecol ; 98(8)2022 08 16.
Article in English | MEDLINE | ID: mdl-35767862

ABSTRACT

The gastrointestinal microbiota (GM) is considered an important component of the vertebrate holobiont. GM-host interactions influence the fitness of holobionts and are, therefore, an integral part of evolution. The house mouse is a prominent model for GM-host interactions, and evidence suggests a role for GM in mouse speciation. However, previous studies based on short 16S rRNA GM profiles of wild house mouse subspecies failed to detect GM divergence, which is a prerequisite for the inclusion of GM in Dobzhansky-Muller incompatibilities. Here, we used standard 16S rRNA GM profiling in two mouse subspecies, Mus musculus musculus and M. m. domesticus, including the intestinal mucosa and content of three gut sections (ileum, caecum, and colon). We reduced environmental variability by sampling GM in the offspring of wild mice bred under seminatural conditions. Although the breeding conditions allowed a contact between the subspecies, we found a clear differentiation of GM between them, in all three gut sections. Differentiation was mainly driven by several Helicobacters and two H. ganmani variants showed a signal of codivergence with their hosts. Helicobacters represent promising candidates for studying GM-host coadaptations and the fitness effects of their interactions.


Subject(s)
Gastrointestinal Microbiome , Animals , Host Microbial Interactions , Mice , RNA, Ribosomal, 16S/genetics
5.
Anticancer Res ; 41(9): 4463-4470, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34475070

ABSTRACT

BACKGROUND/AIM: The treatment of advanced clear cell renal cell carcinoma (ccRCC) is based on stratification of patients according to prognosis (favorable, intermediate, and poor). The aim of the study was to improve prognostication by biomarkers involved in angiogenesis. PATIENTS AND METHODS: The study group consisted of 20 patients who underwent surgery for ccRCC. Gene expression analysis was peformed on a set of matched (primary tumor, metastasis, n=20+20) FFPE tissue samples. An additional analysis was done on expression data of 606 patients obtained from the TCGA Kidney Clear Cell Carcinoma (KIRC) database. Quantitative estimation of mRNA of selected genes (TaqMan human Angiogenesis Array, 97 genes) was performed by a real-time RT-PCR method with TaqMan® arrays. RESULTS: Using the Cox regression model, 4 genes (PDGFB, FGF4, EPHB2 and BAI1) were identified whose expression was related to progression-free interval (PFI). Further analysis using the Kaplan Meier method conclusively revealed the relationship of BAI1 expression to prognosis (both datasets). Patients with higher BAI1 expression had significantly shorter PFI and overall survival. CONCLUSION: We showed that tumor tissue BAI1 expression level is a prognostic marker in ccRCC. Therefore, this gene might be involved in a prognostic panel to improve scoring systems on which the management of metastatic ccRCC patients is based.


Subject(s)
Angiogenic Proteins/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Gene Expression Profiling/methods , Kidney Neoplasms/genetics , Receptors, G-Protein-Coupled/genetics , Up-Regulation , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/surgery , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/mortality , Kidney Neoplasms/surgery , Male , Oligonucleotide Array Sequence Analysis , Prognosis , Regression Analysis , Survival Analysis
6.
Target Oncol ; 16(5): 643-652, 2021 09.
Article in English | MEDLINE | ID: mdl-34363554

ABSTRACT

BACKGROUND: Patients with metastatic renal cell carcinoma (mRCC) are often elderly and have various comorbidities, including cardiovascular diseases. Although these patients have extensive co-exposure to targeted therapy and cardiovascular drugs, the impact of this co-exposure on outcomes for patients with mRCC remains unclear. OBJECTIVE: Our objective was to evaluate the association between the use of cardiovascular medication and survival of patients with mRCC. METHODS: The study included 343 consecutive patients with mRCC treated with sunitinib or pazopanib in the first line. Clinical data obtained from the Renal Cell Carcinoma Information System (RENIS) clinical registry and hospital information systems were retrospectively analyzed. Progression-free survival (PFS) and overall survival (OS) were compared according to the use of common medications, including antihypertensives (i.e., ß-blockers [BBs], angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, calcium channel blockers, and diuretics), acetylsalicylic acid (aspirin), statins, and proton pump inhibitors. RESULTS: The univariate Cox analysis evaluating the impact of the assessed comedications on patient survival revealed that only BBs were significantly associated with PFS (hazard ratio [HR] 0.533, p < 0.001) and OS (HR 0.641, p = 0.006). The median PFS and OS for users of BBs was 18.39 and 37.60 months versus 8.16 and 20.4 months for patients not using BBs (p < 0.001 and p < 0.001, respectively). The Cox multivariate analysis showed that the use of BBs was a significant factor for both PFS (HR 0.428, p = 0.001) and OS (HR 0.518, p = 0.001). CONCLUSIONS: The results of this retrospective study suggest that the use of BBs is associated with favorable outcomes for patients with mRCC treated with sunitinib or pazopanib in the first line.


Subject(s)
Carcinoma, Renal Cell , Cardiovascular Agents , Kidney Neoplasms , Aged , Carcinoma, Renal Cell/drug therapy , Disease-Free Survival , Humans , Indazoles , Indoles/pharmacology , Indoles/therapeutic use , Kidney Neoplasms/drug therapy , Pyrimidines , Pyrroles , Retrospective Studies , Sulfonamides , Sunitinib/pharmacology , Sunitinib/therapeutic use , Treatment Outcome
7.
Cancer Manag Res ; 13: 4077-4086, 2021.
Article in English | MEDLINE | ID: mdl-34054309

ABSTRACT

BACKGROUND: The anticancer properties of metformin have been suggested in numerous experimental studies and several retrospective clinical studies show that its use is associated with improved outcome of patients with cancer. However, limited data are available for patients with metastatic renal cell carcinoma (mRCC) treated with targeted therapy. The aim of this retrospective study was to assess the impact of the metformin use on survival of mRCC patients treated with sunitinib or pazopanib. METHODS: Clinical data from 343 patients with mRCC treated with sunitinib or pazopanib in the first line were analyzed. Progression-free survival (PFS) and overall survival (OS) were compared according to the use of metformin. RESULTS: The median PFS and OS for patients using metformin was 31.1 (95% CI 20.6-35.1) and 51.6 (95% CI 44.7-NR) months compared to 9.3 (95% CI 8.0-12.0) and 22.4 (95% CI 19.4-26.8) months for patients not using metformin (p<0.0001 and p=0.0002, respectively). Cox multivariate analysis shows that the use of metformin remains a significant factor for PFS (HR=0.55 [95% CI 0.343-0.883], p=0.013) and also for OS (HR=0.45 [95% CI 0.256-0.794], p=0.006). CONCLUSION: The present study results suggest that the use of metformin was associated with favorable outcome of mRCC patients treated with sunitinib or pazopanib.

8.
BMC Microbiol ; 20(1): 194, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32631223

ABSTRACT

BACKGROUND: The vertebrate gastrointestinal tract is colonised by microbiota that have a major effect on the host's health, physiology and phenotype. Once introduced into captivity, however, the gut microbial composition of free-living individuals can change dramatically. At present, little is known about gut microbial changes associated with adaptation to a synanthropic lifestyle in commensal species, compared with their non-commensal counterparts. Here, we compare the taxonomic composition and diversity of bacterial and fungal communities across three gut sections in synanthropic house mouse (Mus musculus) and a closely related non-synanthropic mound-building mouse (Mus spicilegus). RESULTS: Using Illumina sequencing of bacterial 16S rRNA amplicons, we found higher bacterial diversity in M. spicilegus and detected 11 bacterial operational taxonomic units with significantly different proportions. Notably, abundance of Oscillospira, which is typically higher in lean or outdoor pasturing animals, was more abundant in non-commensal M. spicilegus. ITS2-based barcoding revealed low diversity and high uniformity of gut fungi in both species, with the genus Kazachstania clearly dominant. CONCLUSIONS: Though differences in gut bacteria observed in the two species can be associated with their close association with humans, changes due to a move from commensalism to captivity would appear to have caused larger shifts in microbiota.


Subject(s)
Bacteria/classification , Fungi/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Ribosomal/genetics , Ecology , Feces/microbiology , Fungi/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Mice , Microbiota , Mycobiome , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...