Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39131340

ABSTRACT

Small extracellular vesicles (sEVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME). Here, we investigate the mechanisms by which sEVs derived from neutrophils treated with the cholesterol metabolite, 27-hydroxycholesterol (27HC), influence breast cancer progression. sEVs released from 27HC treated neutrophils enhance epithelial-mesenchymal transition (EMT) and stem-like properties in breast cancer cells, resulting in loss of adherence, increased migratory capacity and resistance to cytotoxic chemotherapy. Decreased microRNAs (miRs) within the sEVs resulted in activation of the WNT/ß-catenin signaling pathway in recipient cells and suggest that this may be a predominant pathway for stem-like phenotype and EMT. Our findings underscore a novel mechanism by which 27HC-modulated neutrophils contribute to breast cancer pathophysiology through EV-mediated intercellular communication, suggesting potential therapeutic targets in cancer treatment.

2.
Cancer Lett ; 597: 217042, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38908543

ABSTRACT

Although survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative. However, immune checkpoint blockade (ICB) which works through T cells has been largely disappointing for metastatic breast cancer. One reason for this is a suppressive myeloid immune compartment that is unaffected by ICB. Cholesterol metabolism and proteins involved in cholesterol homeostasis play important regulatory roles in myeloid cells. Here, we demonstrate that NR0B2, a nuclear receptor involved in negative feedback of cholesterol metabolism, works in several myeloid cell types to impair subsequent expansion of regulatory T cells (Tregs); Tregs being a subset known to be highly immune suppressive and associated with poor therapeutic response. Within myeloid cells, NR0B2 serves to decrease many aspects of the inflammasome, ultimately resulting in decreased IL1ß; IL1ß driving Treg expansion. Importantly, mice lacking NR0B2 exhibit accelerated tumor growth. Thus, NR0B2 represents an important node in myeloid cells dictating ensuing Treg expansion and tumor growth, thereby representing a novel therapeutic target to re-educate these cells, having impact across different solid tumor types. Indeed, a paper co-published in this issue demonstrates the therapeutic utility of targeting NR0B2.


Subject(s)
Breast Neoplasms , Disease Progression , Myeloid Cells , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Female , Mice , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Mice, Knockout , Interleukin-1beta/metabolism , Cell Line, Tumor , Cell Proliferation , Inflammasomes/metabolism , Inflammasomes/immunology
3.
Cancer Lett ; 597: 217086, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38944231

ABSTRACT

Immune checkpoint blockade (ICB) has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. A paper co-published in this issue describes how NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Here, we develop NR0B2 as a potential therapeutic target. NR0B2 in tumors is associated with improved survival for several cancer types including breast. Importantly, NR0B2 expression is also prognostic of ICB success. Within breast tumors, NR0B2 expression is inversely associated with FOXP3, a marker of Tregs. While a described agonist (DSHN) had some efficacy, it required high doses and long treatment times. Therefore, we designed and screened several derivatives. A methyl ester derivative (DSHN-OMe) emerged as superior in terms of (1) cellular uptake, (2) ability to regulate expected expression of genes, (3) suppression of Treg expansion using in vitro co-culture systems, and (4) efficacy against the growth of primary and metastatic tumors. This work identifies NR0B2 as a target to re-educate myeloid immune cells and a novel ligand with significant anti-tumor efficacy in preclinical models.


Subject(s)
Myeloid Cells , T-Lymphocytes, Regulatory , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Female , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Mice , Cell Line, Tumor , Tumor Microenvironment , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
4.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645737

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.

5.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166515, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35932893

ABSTRACT

Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. Specifically, elevated tumoral TLX expression was associated with prolonged recurrence-free survival and overall survival for breast cancer patients with either estrogen receptor alpha (ERα)-negative or basal-like tumors. Using two TNBC cell lines, we found that stable overexpression of TLX impairs in vitro proliferation. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. We identify SERPINB2 as a likely mediator of these effects. Taken together, our work indicates that TLX impedes the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Epithelial-Mesenchymal Transition/genetics , Estrogen Receptor alpha/genetics , Humans , Ligands , Mice , Orphan Nuclear Receptors/therapeutic use , Receptors, Cytoplasmic and Nuclear/genetics , Triple Negative Breast Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL