Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 11(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052297

ABSTRACT

Abstract: Background: Whey protein has been shown to be one of the best proteins to stimulate muscle protein synthesis rate (MPS), but other high quality proteins, e.g., animal/porcine-derived, could have similar effects. OBJECTIVE: To investigate the effects of hydrolyzed porcine proteins from blood (HPB) and muscle (HPM), in comparison to hydrolyzed whey protein (HW), on MPS after intake of 15 g alone or 30 g protein as part of a mixed meal. We hypothesized that the postprandial MPS would be similar for porcine proteins and whey protein. DESIGN: Eighteen men (mean ± SD age: 24 ± 1 year; BMI: 21.7 ± 0.4 kg/m2) participated in the randomized, double-blind, three-way cross-over study. Subjects consumed the three test products (HPB, HPM and HW) in a random order in two servings at each test day. Serving 1 consisted of a drink with 15 g protein and serving 2 of a drink with 30 g protein together with a mixed meal. A flood-primed continuous infusion of (ring-13C6) phenylalanine was performed and muscle biopsies, blood and urine samples were collected for determination of MPS, muscle free leucine, plasma amino acid concentrations and urea excretion. RESULTS: There were no statistical differences between the MPS measured after consuming 15 g protein alone or 30 g with a mixed meal (p = 0.53) of HPB (0.048 ± 0.007 vs. 0.049 ± 0.008%/h, resp.), HPM (0.063 ± 0.011 vs. 0.062 ± 0.011 %/h, resp.) and HW (0.058 ± 0.007 vs. 0.071 ± 0.013%/h, resp.). However, the impact of protein type on MPS reached statistical tendency (HPB vs. HPM (p = 0.093) and HPB vs. HW (p = 0.067)) with no difference between HPM and HW (p = 0.88). Plasma leucine, branched-chain, essential and total amino acids were generally higher for HPB and HW than HPM (p < 0.01), which reflected their content in the proteins. Muscle-free leucine was higher for HPB than HW and HPM (p < 0.05). CONCLUSION: Hydrolyzed porcine proteins from blood and muscle resulted in an MPS similar to that of HW, although with a trend for porcine blood proteins to be inferior to muscle proteins and whey. Consequently, these porcine-derived muscle proteins can be used similarly to whey protein to support maintenance of skeletal muscle as part of supplements and ingredients in foods.


Subject(s)
Muscle Proteins/biosynthesis , Protein Hydrolysates/administration & dosage , Whey Proteins/administration & dosage , Adult , Amino Acids/metabolism , Animals , Cattle , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Energy Intake , Humans , Male , Swine , Young Adult
2.
Int J Obes (Lond) ; 43(1): 149-157, 2019 01.
Article in English | MEDLINE | ID: mdl-29777234

ABSTRACT

BACKGROUND/OBJECTIVES: Individuals with high pre-treatment bacterial Prevotella-to-Bacteroides (P/B) ratio have been reported to lose more body weight on diets high in fiber than subjects with a low P/B ratio. Therefore, the aim of the present study was to examine potential differences in dietary weight loss responses between participants with low and high P/B. SUBJECTS/METHODS: Eighty overweight participants were randomized (52 completed) to a 500 kcal/d energy deficit diet with a macronutrient composition of 30 energy percentage (E%) fat, 52 E% carbohydrate and 18 E% protein either high (≈1500 mg calcium/day) or low ( ≤ 600 mg calcium/day) in dairy products for 24 weeks. Body weight, body fat, and dietary intake (by 7-day dietary records) were determined. Individuals were dichotomized according to their pre-treatment P/B ratio derived from 16S rRNA gene sequencing of collected fecal samples to test the potential modification of dietary effects using linear mixed models. RESULTS: Independent of the randomized diets, individuals with high P/B lost 3.8 kg (95%CI, 1.8,5.8; P < 0.001) more body weight and 3.8 kg (95% CI, 1.1, 6.5; P = 0.005) more body fat compared to individuals with low P/B. After adjustment for multiple covariates, individuals with high P/B ratio lost 8.3 kg (95% CI, 5.8;10.9, P < 0.001) more body weight when consuming above compared to below 30 g fiber/10MJ whereas this weight loss was 3.2 kg (95% CI, 0.8;5.5, P = 0.008) among individuals with low P/B ratio [Mean difference: 5.1 kg (95% CI, 1.7;8.6, P = 0.003)]. Partial correlation coefficients between fiber intake and weight change was 0.90 (P < 0.001) among individuals with high P/B ratio and 0.25 (P = 0.29) among individuals with low P/B ratio. CONCLUSIONS: Individuals with high P/B lost more body weight and body fat compared to individuals with low P/B, confirming that individuals with a high P/B are more susceptible to weight loss on a diet rich in fiber.


Subject(s)
Bacteroides/physiology , Feces/microbiology , Gastrointestinal Microbiome/physiology , Nutrients/administration & dosage , Overweight/diet therapy , Prevotella/physiology , Weight Loss/physiology , Adult , Diet, Reducing , Dietary Fiber/administration & dosage , Energy Intake , Female , Humans , Male , Middle Aged , Overweight/metabolism , Overweight/microbiology , RNA, Ribosomal, 16S , Retrospective Studies
3.
J Sci Food Agric ; 98(15): 5598-5605, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29696654

ABSTRACT

BACKGROUND: Casein and whey proteins differ in amino acid composition and absorption rate; however, the absorption rate of casein can be increased to mimic that of whey proteins by exogenous hydrolysis. In view of these compositional differences, we studied the metabolic responses to intake of casein, hydrolyzed casein, and whey proteins in overweight and moderately obese men and women by investigating select urinary and blood plasma metabolites. RESULTS: A total of 21 urinary and 23 plasma metabolites were identified by nuclear magnetic resonance spectroscopy. The postprandial plasma metabolites revealed a significant diet-time interaction for isoleucine (P = 0.001) and tyrosine (P = 0.001). The level of isoleucine and tyrosine peaked 90 min postprandially with a 1.4-fold difference following intake of whey proteins compared with either casein or hydrolyzed casein. A 1.2-fold higher urinary level of lactate was observed after intake of whey proteins compared with intake of intact casein (P < 0.01). CONCLUSION: The plasma metabolites revealed different amino acid profiles reflecting the amino acid composition of casein and whey proteins. Furthermore, the results support that casein hydrolysates neither affect the postprandial amino acid absorption rate nor the amino acid level compared with that of intact casein. The urinary lactate increases following whey protein intake might indicate a higher metabolism of glucogenic amino acids. © 2018 Society of Chemical Industry.


Subject(s)
Caseins/chemistry , Obesity/diet therapy , Overweight/diet therapy , Whey Proteins/metabolism , Adult , Caseins/metabolism , Female , Humans , Isoleucine/blood , Isoleucine/urine , Male , Obesity/blood , Obesity/urine , Overweight/blood , Overweight/urine , Plasma/chemistry , Postprandial Period , Tyrosine/blood , Tyrosine/urine , Urine/chemistry , Young Adult
4.
Br J Nutr ; 112(8): 1412-22, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25191896

ABSTRACT

Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic dietary treatments that varied in protein source. The study was conducted in a respiration chamber, where EE, substrate oxidation and subjective appetite were measured over 24 h at three independent visits. Moreover, blood and urine samples were collected from the participants. The results showed no differences in 24 h and postprandial EE or appetite regulation. However, lipid oxidation, estimated from the respiratory quotient (RQ), was found to be higher after consumption of IW than after consumption of HC during daytime (P= 0·014) as well as during the time after the breakfast meal (P= 0·008) when the food was provided. Likewise, NEFA concentrations were found to be higher after consumption of IW than after consumption of HC and IC (P< 0·01). However, there was no overall difference in the concentration of insulin or glucagon-like peptide 1. In conclusion, dietary treatments when served as high-protein mixed meals induced similar effects on EE and appetite regulation, except for lipid oxidation, where RQ values suggest that it is higher after consumption of IW than after consumption of HC.


Subject(s)
Appetite Regulation , Caseins/therapeutic use , Energy Metabolism , Milk Proteins/therapeutic use , Obesity/diet therapy , Overweight/diet therapy , Protein Hydrolysates/therapeutic use , Adult , Amino Acids/metabolism , Body Mass Index , Breakfast , Caseins/metabolism , Cross-Over Studies , Diet, Reducing , Double-Blind Method , Fatty Acids, Nonesterified/blood , Female , Food, Formulated , Humans , Intestinal Absorption , Lipid Metabolism , Male , Milk Proteins/metabolism , Obesity/blood , Obesity/metabolism , Overweight/blood , Overweight/metabolism , Protein Hydrolysates/metabolism , Whey Proteins , Young Adult
5.
Br J Nutr ; 111(5): 944-53, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24168904

ABSTRACT

Dairy products have previously been reported to be associated with beneficial effects on body weight and metabolic risk markers. Moreover, primary data from the Diet, Obesity and Genes (DiOGenes) study indicate a weight-maintaining effect of a high-protein-low-glycaemic index diet. The objective of the present study was to examine putative associations between consumption of dairy proteins and changes in body weight and metabolic risk markers after weight loss in obese and overweight adults. Results were based on secondary analyses of data obtained from overweight and obese adults who completed the DiOGenes study. The study consisted of an 8-week weight-loss phase and a 6-month weight-maintenance (WM) phase, where the subjects were given five different diets varying in protein content and glycaemic index. In the present study, data obtained from all the subjects were pooled. Dairy protein intake was estimated from 3 d dietary records at two time points (week 4 and week 26) during the WM phase. Body weight and metabolic risk markers were determined at baseline (week -9 to -11) and before and at the end of the WM phase (week 0 and week 26). Overall, no significant associations were found between consumption of dairy proteins and changes in body weight and metabolic risk markers. However, dairy protein intake tended to be negatively associated with body weight gain (P=0·08; ß=-0·17), but this was not persistent when controlled for total protein intake, which indicates that dairy protein adds no additional effect to the effect of total protein. Therefore, the present study does not report that dairy proteins are more favourable than other proteins for body weight regulation.


Subject(s)
Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 1/prevention & control , Health Promotion , Milk Proteins/adverse effects , Obesity/prevention & control , Overweight/prevention & control , Biomarkers , Body Mass Index , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/etiology , Diet, Protein-Restricted , Diet, Reducing , Dietary Proteins/administration & dosage , Dietary Proteins/adverse effects , Europe/epidemiology , Female , Glycemic Index , Humans , Male , Middle Aged , Milk Proteins/administration & dosage , Obesity/diet therapy , Obesity/physiopathology , Overweight/diet therapy , Overweight/physiopathology , Risk , Secondary Prevention , Weight Loss
6.
Adv Nutr ; 4(4): 418-38, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23858091

ABSTRACT

Evidence supports that a high proportion of calories from protein increases weight loss and prevents weight (re)gain. Proteins are known to induce satiety, increase secretion of gastrointestinal hormones, and increase diet-induced thermogenesis, but less is known about whether various types of proteins exert different metabolic effects. In the Western world, dairy protein, which consists of 80% casein and 20% whey, is a large contributor to our daily protein intake. Casein and whey differ in absorption and digestion rates, with casein being a "slow" protein and whey being a "fast" protein. In addition, they differ in amino acid composition. This review examines whether casein, whey, and other protein sources exert different metabolic effects and targets to clarify the underlying mechanisms. Data indicate that whey is more satiating in the short term, whereas casein is more satiating in the long term. In addition, some studies indicate that whey stimulates the secretion of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide more than other proteins. However, for the satiety (cholecystokinin and peptide YY) and hunger-stimulating (ghrelin) hormones, no clear evidence exists that 1 protein source has a greater stimulating effect compared with others. Likewise, no clear evidence exists that 1 protein source results in higher diet-induced thermogenesis and promotes more beneficial changes in body weight and composition compared with other protein sources. However, data indicate that amino acid composition, rate of absorption, and protein/food texture may be important factors for protein-stimulated metabolic effects.


Subject(s)
Appetite/drug effects , Body Composition/drug effects , Body Weight/drug effects , Dairy Products , Energy Metabolism/drug effects , Milk Proteins/administration & dosage , Absorption , Animals , Caseins/administration & dosage , Caseins/pharmacokinetics , Controlled Clinical Trials as Topic , Diet , Digestion , Gastrointestinal Hormones/metabolism , Humans , Hunger/drug effects , MEDLINE , Milk Proteins/pharmacokinetics , Satiation/drug effects , Time Factors , Whey Proteins
7.
Am J Physiol Regul Integr Comp Physiol ; 305(5): R490-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23842679

ABSTRACT

Obese individuals are characterized by low circulating adiponectin concentrations and an increased number of macrophages in adipose tissue, which is believed to be causally associated with chronic low-grade inflammation and insulin resistance. Regular physical exercise decreases overall morbidity in obese subjects, which may be due to modulations of inflammatory pathways. In this randomized clinical trial we investigated the separate effects of endurance training-induced weight loss, diet-induced weight loss, and endurance training per se (without weight loss) on plasma adiponectin multimer composition (Western blotting) and adipose tissue macrophage content (immunohistochemistry) in young, moderately overweight men. Weight loss and endurance training per se decreased whole body fat percentage in an additive manner. No intervention-induced changes were observed for plasma total adiponectin. Surprisingly, endurance training, irrespectively of any associated weight loss, shifted the adiponectin multimer distribution toward a lower molecular weight (21% decrease in HMW/LMW, P = 0.015), whereas diet-induced weight loss shifted the distribution toward a higher molecular weight (42% increase in HMW/MMW, P < 0.001). Furthermore, endurance training per se increased the number of anti-inflammatory CD163⁺ macrophages [from 12.7 ± 2.1 (means ± SE) to 16.1 ± 3.1 CD163⁺ cells/100 adipocytes, P = 0.013], whereas diet-induced weight loss tended to decrease CD68⁺ macrophages in subcutaneous abdominal adipose tissue. Thus regular physical exercise influences systemic and adipose tissue inflammatory pathways differently than diet-induced weight loss in younger, moderately overweight men. Our data suggest that some of the health benefits of a physically active lifestyle may occur through modulations of anti- rather than pro-inflammatory pathways in young, overweight men.


Subject(s)
Adiponectin/blood , Adipose Tissue/pathology , Macrophages/pathology , Overweight/physiopathology , Overweight/rehabilitation , Physical Endurance , Weight Loss , Adipose Tissue/physiopathology , Adult , Humans , Male , Physical Fitness , Protein Multimerization , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...