Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730845

ABSTRACT

To address tooth enamel demineralization resulting from factors such as acid erosion, abrasion, and chronic illness treatments, it is important to develop effective daily dental care products promoting enamel preservation and surface remineralization. This study focused on formulating four toothpastes, each containing calcined synthetic hydroxyapatite (HAP) in distinct compositions, each at 4%, along with 1.3% birch extract. Substitution elements were introduced within the HAP structure to enhance enamel remineralization. The efficacy of each toothpaste formulation was evaluated for repairing enamel and for establishing the dynamic of the remineralization. This was performed by using an in vitro assessment of artificially demineralized enamel slices. The structural HAP features explored by XRD and enamel surface quality by AFM revealed notable restorative properties of these toothpastes. Topographic images and the self-assembly of HAP nanoparticles into thin films on enamel surfaces showcased the formulations' effectiveness. Surface roughness was evaluated through statistical analysis using one-way ANOVA followed by post-test Bonferroni's multiple comparison test with a p value < 0.05 significance setting. Remarkably, enamel nanostructure normalization was observed within a short 10-day period of toothpaste treatment. Optimal remineralization for all toothpastes was reached after about 30 days of treatment. These toothpastes containing birch extract also have a dual function of mineralizing enamel while simultaneously promoting enamel health and restoration.

2.
Medicina (Kaunas) ; 60(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38792890

ABSTRACT

Background and Objectives: This scoping review investigates recent trends in adipose tissue-derived injectable therapies for osteoarthritis (OA) in animal models, focusing on minimally manipulated or lightly processed adipose tissue. By evaluating and examining the specific context in which these therapies were investigated across diverse animal OA models, this review aims to provide valuable insights that will inform and guide future research and clinical applications in the ongoing pursuit of effective treatments for osteoarthritis. Materials and Methods: This research conducted a comprehensive literature review of PubMed and Embase to determine studies about minimally manipulated adipose tissue-derived injectable therapies for osteoarthritis investigated using animal models. The primary search found 530 results. After excluding articles that focused on spontaneous osteoarthritis; on transfected, preconditioned, cultured, or co-cultured adipose-derived stem cells; and articles with unavailable full text, we included 11 articles in our review. Results: The examined therapies encompassed mechanical micro-fragmented adipose tissue (MFAT) and stromal vascular fraction (SVF) obtained via collagenase digestion and centrifugation. These interventions were evaluated across various animal models, including mice, rats, rabbits, and sheep with induced OA. Notably, more studies concentrated on surgically induced OA rather than chemically induced OA. The assessment of these therapies focused on elucidating their protective immunomodulatory, anti-inflammatory, and chondroregenerative potential through comprehensive evaluations, including macroscopic assessments, histological analyses, immunohistochemical examinations, and biochemical assays. Conclusions: This review provides a comprehensive analysis of adipose tissue-derived injectable therapies for osteoarthritis across diverse animal models. While revealing potential benefits and insights, the heterogeneity of data and the limited number of studies highlight the need for further research to formulate conclusive recommendations for clinical applications.


Subject(s)
Adipose Tissue , Disease Models, Animal , Osteoarthritis , Animals , Osteoarthritis/therapy , Rats , Rabbits , Mice , Sheep
3.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37887581

ABSTRACT

This work aimed to compare the effect of four new toothpastes (P1-P4) based on pure and biomimetic substituted nano-hydroxyapatites (HAPs) on remineralization of human enamel. Artificially demineralized enamel slices were daily treated for ten days with different toothpastes according to the experimental design. Tooth enamel surfaces were investigated using atomic force microscope (AFM) images and surface roughness (Ra) determined before and after treatment. The surface roughness of enamel slices was statistically analyzed by one-way ANOVA and Bonferroni's multiple comparison test. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) data revealed the HAP structure with crystal sizes between 28 and 33 nm and crystallinity between 29 and 37%. The average size of HAP particles was found to be between 30 and 40 nm. The Ra values indicated that P3 (HAP-Mg-Zn-Sr-Si) toothpaste was the most effective after 10 days of treatment, leading to the lowest mean roughness. The P3 and P2 (HAP) toothpastes were found to be effective in promoting remineralization. Specifically, their effectiveness can be ranked as follows: P3 = P2 > P4 (HAP-Mg-Zn-Si) > P1 (HAP-Zn), considering both the chemical composition and the size of their constitutive nanoparticles. The proposed toothpastes might be used successfully to treat early tooth decay.

4.
Medicina (Kaunas) ; 58(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363548

ABSTRACT

Background and objectives: Cementless total hip arthroplasty is a common surgical procedure and perioperative thromboprophylaxis is used to prevent deep vein thrombosis or pulmonary embolism. Osseointegration is important for long-term implant survival, and there is no research on the effect of different thromboprophylaxis agents on the process of osseointegration. Materials and Methods: Seventy rats were allocated as follows: Group I (control group), Group II (enoxaparin), Group III (nadroparin), and Group IV (fondaparinux). Ovariectomy was performed on all subjects, followed by the introduction of an intramedullary titanium implant into the femur. Thromboprophylaxis was administered accordingly to each treatment group for 35 days postoperatively. Results: Group I had statistically significantly lower anti-Xa levels compared to treatment groups. Micro-CT analysis showed that nadroparin had lower values compared to control in bone volume (0.12 vs. 0.21, p = 0.01) and percent bone volume (1.46 vs. 1.93, p = 0.047). The pull-out test showed statistically significant differences between the control group (8.81 N) compared to enoxaparin, nadroparin, and fondaparinux groups (4.53 N, 4 N and 4.07 N, respectively). Nadroparin had a lower histological cortical bone tissue and a higher width of fibrous tissue (27.49 µm and 86.9 µm) at the peri-implant area, compared to control (43.2 µm and 39.2 µm), enoxaparin (39.6 µm and 24 µm), and fondaparinux (36.2 µm and 32.7 µm). Conclusions: Short-term administration of enoxaparin, nadroparin, and fondaparinux can reduce the osseointegration of titanium implants, with nadroparin having the most negative effect. These results show that enoxaparin and fondaparinux are preferred to be administered due to a lesser negative impact on the initial implant fixation.


Subject(s)
Nadroparin , Venous Thromboembolism , Female , Rats , Animals , Nadroparin/pharmacology , Nadroparin/therapeutic use , Fondaparinux , Enoxaparin/pharmacology , Enoxaparin/therapeutic use , Titanium/therapeutic use , Osseointegration , Factor X , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Venous Thromboembolism/drug therapy
5.
Med Pharm Rep ; 95(2): 179-184, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35721045

ABSTRACT

Background and aim: Despite the great success of primary total hip arthroplasty (THA), the number of revisions has significantly increased over the past years. The objectives of the study were to investigate the main causes that lead to revision of THA, the time interval between primary THA and revision, and the results of the revision surgery. We also assessed whether there was any correlation between the patients' age, BMI, diagnosis for primary THA and the cause of failure. Methods: This paper retrospectively analyzed 189 patients with THA revision surgery performed over a six-year period, between 2015 and 2020. Patients' charts were reviewed to collect data on patient's demographics, patient's primary THA and revision procedures, and the time interval between primary THA and revision surgery. Patients were divided into 3 groups according to the time interval THA-revision: group I (<5 years), group II (5-10 years) and group III (>10 years). Results: The patients' mean age (82 men/107 women) was 69.59±7.85 years (range 31-92 years). The most frequent revision cause was aseptic loosening (52%), followed by periprosthetic fractures (18%), infection (17%) and persistent hip instability (12%). Patients' age (r=0.43) and BMI (r=-0.4) had low correlation with the time interval between THA and revision. Conclusions: The main causes for revision THA within less than five years are infection and instability, while revision for aseptic loosening is performed especially after five years from the primary THA. Osteonecrosis, post-traumatic osteoarthritis and femoral neck fracture are correlated with a higher incidence of revision at less than five years from the primary THA.

6.
Int Orthop ; 45(4): 1025-1031, 2021 04.
Article in English | MEDLINE | ID: mdl-33078205

ABSTRACT

PURPOSE: The purpose of this article is to describe the novel technique of arthroscopic-assisted reduction and internal fixation (ARIF) of talar neck fractures, presenting also the outcomes of this treatment method in a series of four patients. METHODS: Between 2011 and 2019, we have treated in our service a number of four patients with talar neck fractures, by the arthroscopic technique. The surgical intervention consists in arthroscopic exploration of tibiotalar and subtalar joints, arthroscopic lavage and debridement, reduction, and osteosynthesis with two cannulated screws under both arthroscopic and fluoroscopic control. Post-operative care consists in non-weightbearing immobilization for 6 weeks, followed by partial loading under the protection of a walking brace for the next six weeks and ROM exercises. The patients were followed up at three  months, when a CT scan was performed, and at one year, when X-ray images showed the consolidation of fractures. RESULTS: Normal or slightly reduced ROM of the ankle and hindfoot was noted in three out of four patients, absence of any pain, or disability (3 patients). The AOFAS' Ankle-Hindfoot scale showed good and excellent results; mean score was 92.75 points (86-98p) at one year after the surgery. CONCLUSION: Arthroscopic-assisted management of talar fractures offers the advantages of minimally invasive surgery combined with good visualization of the fracture, good control of anatomic reduction, and the possibility to treat associated lesions. Main disadvantages of the method are technical difficulties, requires a prolonged learning curve, and offers limited fixation alternatives.


Subject(s)
Ankle Fractures , Talus , Ankle Fractures/diagnostic imaging , Ankle Fractures/surgery , Arthroscopy , Fracture Fixation , Fracture Fixation, Internal , Humans , Minimally Invasive Surgical Procedures , Talus/diagnostic imaging , Talus/surgery , Treatment Outcome
7.
Int J Nanomedicine ; 14: 5799-5816, 2019.
Article in English | MEDLINE | ID: mdl-31440048

ABSTRACT

PURPOSE: Bone consolidation after severe trauma is the most challenging task in orthopedic surgery. This study aimed to develop biomimetic composite for coating Ti implants. Afterwards, these implants were tested in vivo to assess bone consolidation in the absence or the presence of high-frequency pulsed electromagnetic short-waves (HF-PESW). MATERIALS: Biomimetic coating was successfully developed using multi-substituted hydroxyapatite (ms-HAP) functionalized with collagen (ms-HAP/COL), embedded into poly-lactic acid (PLA) matrix (ms-HAP/COL@PLA), and subsequently covered with self-assembled COL layer (ms-HAP/COL@PLA/COL, named HAPc). METHODS: For in vivo evaluation, 32 Wistar albino rats were used in four groups: control group (CG) with Ti implant; PESW group with Ti implant+HF-PESW; HAPc group with Ti implant coated with HAPc; HAPc+PESW group with Ti implant coated with HAPc+HF-PESW. Left femoral diaphysis was fractured and fixed intramedullary. From the first post-operative day, PESW and HAPc+PESW groups underwent HF-PESW stimulation for 14 consecutive days. Biomimetic coating was characterized by XRD, HR-TEM, SEM, EDX and AFM. RESULTS: Osteogenic markers (ALP and osteocalcin) and micro-computed tomography (CT) analysis (especially bone volume/tissue volume ratio results) indicated at 2 weeks the following group order: HAPc+PESW>HAPc≈PESW (P>0.05) and HAPc+PESW>control (P<0.05), indicating the higher values in HAPc+PESW group compared to CG. The fracture-site bone strength showed, at 2 weeks, the highest average value in HAPc+PESW group. Moreover, histological analysis revealed the most abundant COL fibers assembled in dense bundles in HAPc-PESW group. At 8 weeks, micro-CT indicated higher values only in HAPc+PESW group vs CG (P<0.05), and histological results showed a complete-healed fracture in groups: HAPc+PESW, HAPc and PESW, but with more advanced bone remodeling in HAPc+PESW group. CONCLUSION: Using Ti implants coated by HAPc jointly with HF-PESW stimulation positively influenced the bone consolidation process, especially in its early phase, thus potentially providing a superior strategy for clinical applications.


Subject(s)
Biomimetic Materials/pharmacology , Bone and Bones/drug effects , Coated Materials, Biocompatible/pharmacology , Electromagnetic Phenomena , Polyesters/chemistry , Prostheses and Implants , Titanium/pharmacology , Animals , Biomarkers/blood , Biomechanical Phenomena , Cattle , Collagen/pharmacology , Durapatite/pharmacology , Femur/drug effects , Osteogenesis/drug effects , Rats, Wistar , Surface Properties , X-Ray Microtomography
8.
Bosn J Basic Med Sci ; 19(2): 201-209, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30794499

ABSTRACT

In vitro studies showed that high-frequency pulsed electromagnetic fields (HF-PEMFs) increase the activity/expression of early and late osteogenic markers and enhance bone mineralization. The main aim of this study was to investigate the in vivo effects of HF-PEMFs on fracture healing using a rat model. A femur fracture was established by surgery in 20 male Wistar rats. Titanium nails were implanted to reduce and stabilize the fracture. After surgery, 20 rats were equally divided into untreated control and treated group (from the first postoperative day HF-PEMFs at 400 pulses/sec [pps] were applied for 10 minutes/day, for two weeks). Quantitative and qualitative assessment of bone formation was made at two and eight weeks following surgery and included morphological and histological analysis, serological analysis by ELISA, micro-computed tomography (micro-CT), and three-point bending test. At two weeks in HF-PEMF group, soft callus was at a more advanced fibrocartilaginous stage and the bone volume/total tissue volume (BV/TV) ratio in the callus area was significantly higher compared to control group (p = 0.047). Serum concentration of alkaline phosphatase (ALP) and osteocalcin (OC) was significantly higher in HF-PEMF group (ALP p = 0.026, OC p = 0.006) as well as the mechanical strength of femurs (p = 0.03). At eight weeks, femurs from HF-PEMF group had a completely formed woven bone with dense trabeculae, active bone marrow, and had a significantly higher BV/TV ratio compared to control (p = 0.01). HF-PEMFs applied from the first postoperative day, 10 minutes/day for two weeks, enhance bone consolidation in rats, especially in the early phase of fracture healing.


Subject(s)
Bone and Bones/physiology , Calcification, Physiologic , Electromagnetic Fields , Femoral Fractures/therapy , Fracture Healing , Animals , Enzyme-Linked Immunosorbent Assay , Fibrocartilage , Male , Osteoblasts , Osteocalcin/metabolism , Osteogenesis , Postoperative Period , Rats , Rats, Wistar , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...