Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36611633

ABSTRACT

Peanut meal has an excellent total protein content but also has low rumen undegradable protein (RUP). High-performance ruminants have high RUP requirements. We aimed to evaluate the effects of processing peanut meal with an autoclave and conventional and microwave ovens, with and without using xylose on its ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were conducted to evaluate intestinal digestibility (ID). The control treatment had a greater fraction A for DM and CP than peanut meals processed with an autoclave or conventional oven. The control had greater kd for CP compared with the microwave. The addition of xylose decreased fraction A, the degradation rate of fraction B (kd) and RUP, and increased the protein B fraction of autoclaved peanut meal. We observed a decrease in effective degradability (ED) and increased RUP for processed treatments in all experiments compared with the control. Processing methods did not affect the protein ID of autoclaved peanut meal compared to the control. An interaction between xylose and heating time was observed, where increasing heating time linearly reduced the ID of xylose-untreated treatments. Overall, these results suggest that the tested methods effectively increased the RUP content of peanut meal.

2.
Animals (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36611654

ABSTRACT

The ruminal kinetics of protein sources may be changed by heat and sugar treatments. Thus, these processing methods may be used as alternatives to increase beef-cattle diets' rumen undegradable protein (RUP). We aimed to evaluate the effects of processing cottonseed meals with autoclave, conventional, and microwave ovens, with and without using xylose, on the ruminal kinetics degradation parameters and intestinal digestibility (ID). In situ studies were conducted, and each sample was incubated in the rumen to determine dry matter (DM) and crude protein (CP) rumen degradation kinetics. In vitro studies were also conducted to evaluate ID. The control treatment had a greater soluble fraction for DM and CP than processed cottonseed meals (p < 0.05). The addition of xylose decreased both DM and CP water-soluble fractions (fraction A) of cottonseed meal heated in a conventional oven (p < 0.05). Compared to the control, we observed a decrease in effective degradability and increased RUP for all processed methods (p < 0.05). Furthermore, conventional and microwave ovens showed greater ID than the control. Moreover, xylose-treated groups heated in the autoclave and conventional ovens had greater ID than xylose-untreated cottonseed meal. Under these experimental conditions, cottonseed RUP was increased by the evaluated processing methods.

3.
J Anim Sci ; 98(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32852034

ABSTRACT

This study aimed to determine feeding behavior, water intake (WI), and energy requirements of high- and low-residual feed intake (RFI) Nellore bulls. Data were collected from 42 weaned Nellore bulls (initial body weight [BW] 260 ± 8.1 kg; age 7 ± 1.0 mo) housed in a feedlot in group pens that contained electronic feeders, waterers, and a scale connected to the waterers. The individual dry matter intake (DMI), WI, and BW were recorded daily. The indexes of average daily gain (ADG), feed efficiency (gain to feed ratio), and RFI were calculated based on the data collected. The number of feeder and waterer visits and the time spent feeding or drinking water per animal per day were recorded as feeding behavior measures. Energy requirements for maintenance and gain were calculated according to the BR-CORTE system. Low-RFI bulls had lower DMI (P < 0.01) than high-RFI bulls, and no differences (P > 0.05) were observed between the two groups regarding WI, performance, and feeding behavior measurements. The net energy requirements for maintenance, metabolizable energy for maintenance, and efficiency of metabolizable energy utilization were 63.4, 98.6 kcal/metabolic empty body weight (EBW)0.75 daily, and 64.3%, respectively, for low-RFI bulls, and 78.1, 123.9 kcal/EBW0.75 daily, and 63.0%, respectively, for high-RFI bulls. The equations obtained for net energy for gain (NEg) were: NEg (Mcal/EBW0.75) daily = 0.0528 × EBW0.75 × EBG0.5459 for low-RFI and 0.054 × EBW0.75 × EBG0.8618 for high-RFI bulls, where EBG is the empty body gain. We did not observe any difference (P > 0.05) regarding the composition of gain in terms of protein or fat deposition between the two groups. Both groups also presented similar (P > 0.05) carcass and non-carcass traits. Therefore, our study shows that low-RFI Nellore bulls eat less, grow at a similar rate, and have lower maintenance energy requirements than high-RFI bulls. We also suggest that the lower feed intake did not compromise the carcass traits of more efficient animals, which would reduce production costs and increase the competitiveness of the Brazilian beef sector on the world market.


Subject(s)
Cattle/physiology , Energy Intake , Energy Metabolism , Feeding Behavior , Proteins/metabolism , Animal Feed/analysis , Animals , Body Weight , Brazil , Diet/veterinary , Drinking , Male , Nutritional Requirements , Weaning
4.
J Sci Food Agric ; 100(8): 3536-3543, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32240539

ABSTRACT

BACKGROUND: Vitamin A has been reported as a factor influencing marbling deposition in meat from animals. Although the mechanisms by which vitamin A regulates lipid metabolism in mature adipocytes are already well-established, information regarding molecular mechanisms underlying the effects of vitamin A on the regulation of intramuscular fat deposition in beef cattle still remains limited. The present study aimed to assess the molecular mechanisms involved in the intramuscular fat deposition in beef cattle supplemented with vitamin A during the fattening phase using a proteomic approach. RESULTS: Vitamin A supplementation during the fattening phase decreased intramuscular fat deposition in beef cattle. Proteome and phospho-proteome analysis together with biological and networking analysis of the protein differentially abundant between treatments indicated that Vitamin A supplementation affects the overall energy metabolism of skeletal muscle, impairing lipid biosynthesis in skeletal muscle. CONCLUSION: Vitamin A supplementation at fattening phase impairs intramuscular fat deposition in beef cattle likely by changing the energy metabolism of skeletal muscle. The interaction of retinoic acid and heat shock 70-kDa protein may play a pivotal role in intramuscular fat deposition as a consequence of vitamin A supplementation by impairing de novo fatty acid synthesis as a result of a possible decrease in insulin sensitivity in the skeletal muscle. © 2020 Society of Chemical Industry.


Subject(s)
Cattle/metabolism , Meat/analysis , Muscle, Skeletal/chemistry , Vitamin A/metabolism , Animal Feed/analysis , Animals , Dietary Supplements/analysis , Energy Metabolism , Fatty Acids/analysis , Fatty Acids/biosynthesis , Lipogenesis , Muscle, Skeletal/metabolism , Proteomics , Vitamin A/administration & dosage
5.
J Proteomics ; 199: 51-66, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30862562

ABSTRACT

The objective of this study was to evaluate the differential proteome and phosphoproteome between bulls and steers during conversion of muscle to meat, as well as after 14 days of aging. Twelve male Nellore (Bos taurus indicus) calves were used, and six calves were randomly selected for surgical castration. Calves were fed the same diet and were harvested after 230 days on feed. Longissimus muscle was sampled just after stunning (0d postmortem), at deboning (1d postmortem) and after aging (14d postmortem) for differential proteome analysis. Castration upregulated (P < 0.05) the abundance of glycolytic enzymes, while the oxidative phosphorylation protein ATP5B was downregulated (P < 0.05). In addition, abundance of troponin T fast isoform (TNNT3) was upregulated by castration (P < 0.05), while the slow isoform (TNNT1) tended to be decreased (P < 0.10). The creatine kinase M-type was markedly fragmented postmortem. Abundance of phosphorylated PGM1 increased during the first 24 h postmortem and was highly correlated with carcass pH. Further, abundance of the phosphorylated myofibrillar proteins ACTA1 and MYLPF were positively correlated with sarcomere shortening. Overall, our finds demonstrated that abundance and phosphorylation of glycolytic enzymes are associated with changes in beef tenderness and intramuscular fat. SIGNIFICANCE: The design of the present study allowed to clarify the key proteins related to changes during conversion of muscle to meat such as pH decline and sarcomere shortening. In addition, the correlation between some biomarker and meat quality traits were confirmed.


Subject(s)
Meat/standards , Muscle, Skeletal/chemistry , Phosphoproteins/analysis , Proteome/analysis , Animals , Castration , Cattle , Glycolysis , Male , Muscle Proteins/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Phosphorylation , Quality Control , Red Meat/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...