Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5257, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701743

ABSTRACT

Compact samples of nano-helices built by means of a focused ion beam technology with large bandwidth and high dichroism for circular polarization are promising for the construction of built-in-chip sensors, where the ideal transducer must be sufficiently confined without compromising its filtering ability. Direct all-optical measurements revealed the sample's dichroic character with insufficient details because of scattering and diffraction interference. On the other hand, photoacoustic measurements resulted to be a possible alternative investigation, since they directly deal with absorbed power and allow to get clear evidences of the differential selection for the two opposite polarization states. Multi-level numerical simulations confirmed the experimental results, proving once again the reliability of photoacoustic technique and the versatility of this class of dichroic artificial materials.

2.
Nano Lett ; 16(9): 5823-8, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27564432

ABSTRACT

The capability to fully control the chiro-optical properties of metamaterials in the visible range enables a number of applications from integrated photonics to life science. To achieve this goal, a simultaneous control over complex spatial and localized structuring as well as material composition at the nanoscale is required. Here, we demonstrate how circular dichroic bands and optical rotation can be effectively and independently tailored throughout the visible regime as a function of the fundamental meta-atoms properties and of their three dimensional architecture in a the helix-shaped metamaterials. The record chiro-optical effects obtained in the visible range are accompanied by an additional control over optical efficiency, even in the plasmonic context. These achievements pave the way toward fully integrated chiral photonic devices.

3.
Nanoscale ; 7(43): 18081-8, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26467488

ABSTRACT

In this work, we experimentally investigate the chiro-optical properties of 3D metallic helical systems at optical frequencies. Both single and triple-nanowire geometries have been studied. In particular, we found that in single-helical nanostructures, the enhancement of chiro-optical effects achievable by geometrical design is limited, especially with respect to the operation wavelength and the circular polarization conversion purity. Conversely, in the triple-helical nanowire configuration, the dominant interaction is the coupling among the intertwined coaxial helices which is driven by a symmetric spatial arrangement. Consequently, a general improvement in the g-factor, extinction ratio and signal-to-noise-ratio is achieved in a broad spectral range. Moreover, while in single-helical nanowires a mixed linear and circular birefringence results in an optical activity strongly dependent on the sample orientation and wavelength, in the triple-helical nanowire configuration, the obtained purely circular birefringence leads to a large optical activity up to 8°, independent of the sample angle, and extending in a broad band of 500 nm in the visible range. These results demonstrate a strong correlation between the configurational internal interactions and the chiral feature designation, which can be effectively exploited for nanoscale chiral device engineering.

4.
Nat Commun ; 6: 6484, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25784379

ABSTRACT

Three dimensional helical chiral metamaterials resulted in effective manipulation of circularly polarized light in the visible infrared for advanced nanophotonics. Their potentialities are severely limited by the lack of full rotational symmetry preventing broadband operation, high signal-to-noise ratio and inducing high optical activity sensitivity to structure orientation. Complex intertwined three dimensional structures such as multiple-helical nanowires could overcome these limitations, allowing the achievement of several chiro-optical effects combining chirality and isotropy. Here we report three dimensional triple-helical nanowires, engineered by the innovative tomographic rotatory growth, on the basis of focused ion beam-induced deposition. These three dimensional nanostructures show up to 37% of circular dichroism in a broad range (500-1,000 nm), with a high signal-to-noise ratio (up to 24 dB). Optical activity of up to 8° only due to the circular birefringence is also shown, tracing the way towards chiral photonic devices that can be integrated in optical nanocircuits to modulate the visible light polarization.

5.
Appl Opt ; 51(26): 6389-97, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22968279

ABSTRACT

A way to perform sampling of the evanescent spectrum of an object is considered by using a photonic bandgap (PBG). The coupling between the scattered field from the object and the PBG is discussed, showing a connection of the guide modes with selected spectral components of the scattering object in free space. Some useful examples have been discussed, showing good agreement between numerical results and theoretical previsions.

6.
Opt Express ; 19(9): 8218-32, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21643072

ABSTRACT

We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.


Subject(s)
Nanostructures/chemistry , Nanotechnology/instrumentation , Optical Devices , Silver/chemistry , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
7.
Opt Express ; 19(27): 26752-67, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274259

ABSTRACT

We numerically study second harmonic generation from dipole gold nanoantennas by analyzing the different contributions of bulk and surface nonlinear terms. We focus our attention to the properties of the emitted field related to the different functional expressions of the two terms. The second harmonic field exhibits different far and near field patterns if both nonlinear contributions are taken into account or if only one of them is considered. This effect persists despite of the model used to estimate the parameters of the nonlinear sources and it is strictly related to the resonant behavior of the plasmonic nanostructure at the fundamental frequency field and to its linear properties at the second harmonic frequency. We show that the excitation of localized surface plasmon polaritons in these structures can remarkably modify the nonlinear response of the system by enhancing surface and/or bulk contributions, creating regimes where bulk nonlinear terms dominate over surface linear terms and vice versa. Finally, the results of our calculations suggest a method that could be implemented to experimentally extract information on the relevance of bulk and surface contributions by measuring and analyzing the generated far field second harmonic patterns in metal nanoantennas and, more in general, in plasmonic nanostructures.


Subject(s)
Nanostructures/chemistry , Radiometry/methods , Surface Plasmon Resonance/methods , Computer Simulation , Light , Models, Theoretical , Radiation Dosage , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...