Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
2.
Ageing Res Rev ; 99: 102405, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971321

ABSTRACT

Diabetes mellitus, a metabolic condition affecting around 537 million individuals worldwide, poses significant challenges, particularly among the elderly population. The etiopathogenesis of type 2 diabetes (T2D) depends on a combination of the effects driven by advancing age, genetic background, and lifestyle habits, e.g. overnutrition. These factors influence the development of T2D differently in men and women, with an obvious sexual dimorphism possibly underlying the diverse clinical features of the disease in different sexes. More recently, environmental pollution, estimated to cause 9 million deaths every year, is emerging as a novel risk factor for the development of T2D. Indeed, exposure to atmospheric pollutants such as PM2.5, O3, NO2, and Persistent Organic Pollutants (POP)s, along with their combination and bioaccumulation, is associated with the development of T2D and obesity, with a 15 % excess risk in case of exposure to very high levels of PM2.5. Similar data are available for plasticizer molecules, e.g. bisphenol A and phthalates, emerging endocrine-disrupting chemicals. Even though causality is still debated at this stage, preclinical evidence sustains the ability of multiple pollutants to affect pancreatic function, promote insulin resistance, and alter lipid metabolism, possibly contributing to T2D onset and progression. In addition, preclinical findings suggest a possible role also for plastic itself in the development of T2D. Indeed, pioneeristic studies evidenced that micro- or nanoplastics (MNP)s, particles in the micro- or nano- range, promote cellular damage, senescence, inflammation, and metabolic disturbances, leading to insulin resistance and impaired glucose metabolism in animal and/or in vitro models. Here we synthesize recent knowledge relative to the association between air-related or plastic-derived pollutants and the incidence of T2D, discussing also the possible mechanistic links suggested by the available literature. We then anticipate the need for future studies in the field of candidate therapeutic strategies limiting pollution-induced damage in preclinical models, such as SGLT-2 inhibitors. We finally postulate that future guidelines for T2D prevention should consider pollution and sex an additional risk factors to limit the diabetes pandemic.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Humans , Risk Factors , Female , Male , Environmental Pollution/adverse effects , Animals , Environmental Exposure/adverse effects , Sex Factors , Sex Characteristics
3.
J Transl Med ; 22(1): 676, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044184

ABSTRACT

BACKGROUND: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS: In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS: Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS: These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.


Subject(s)
Breast Neoplasms , Fatty Acid Synthase, Type I , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/enzymology , Female , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lipidomics , Metabolomics , L-Lactate Dehydrogenase
4.
Eur J Med Chem ; 276: 116669, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39053189

ABSTRACT

The present study describes a small library of peptides derived from a potent and selective CXCR4 antagonist (3), wherein the native disulfide bond is replaced using a side-chain to tail macrolactamization technique to vary ring size and amino acid composition. The peptides were preliminary assessed for their ability to interfere with the interaction between the receptor and anti-CXCR4 PE-conjugated antibody clone 12G5. Two promising candidates (13 and 17) were identified and further evaluated in a125I-CXCL12 competition binding assay, exhibiting IC50 in the low-nanomolar range. Furthermore, both candidates displayed high selectivity towards CXCR4 with respect to the cognate receptor CXCR7, ability to block CXCL12-dependent cancer cell migration, and receptor internalization, albeit at a higher concentration compared to 3. Molecular modeling studies on 13 and 17 produced a theoretical model that may serve as a guide for future modifications, aiding in the development of analogs with improved affinity. Finally, the study provides valuable insights into developing therapeutic agents targeting CXCR4-mediated processes, demonstrating the adaptability of our lead peptide 3 to alternative cyclization approaches and offering prospects for comprehensive investigations into the receptor region's interaction with its C-terminal region.

5.
ACS Pharmacol Transl Sci ; 7(7): 2125-2142, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022363

ABSTRACT

Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.

6.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730609

ABSTRACT

Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.

7.
Ageing Res Rev ; 95: 102251, 2024 03.
Article in English | MEDLINE | ID: mdl-38428821

ABSTRACT

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Subject(s)
Neurodegenerative Diseases , Regulated Cell Death , Humans , Aging/physiology , Apoptosis/physiology , Longevity
8.
Pharmaceutics ; 16(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543267

ABSTRACT

Recent advances in comprehending the essential molecular mechanisms that govern cancer signaling have revealed the pivotal involvement of kinases in the development and progression of various cancer types [...].

9.
Cell Chem Biol ; 30(12): 1652-1665.e6, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38065101

ABSTRACT

The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).


Subject(s)
Peptides, Cyclic , Telomeric Repeat Binding Protein 2 , DNA Damage , Peptides, Cyclic/pharmacology , Telomere , Telomeric Repeat Binding Protein 2/antagonists & inhibitors , Telomeric Repeat Binding Protein 2/chemistry , Telomeric Repeat Binding Protein 2/genetics , Protein Domains , Cell Line, Tumor
10.
J Transl Med ; 21(1): 627, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37715252

ABSTRACT

BACKGROUND: Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS: Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS: SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION: Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuin 3 , Sirtuins , Humans , Liver Neoplasms/genetics , Sirtuin 1 , Carcinoma, Hepatocellular/genetics , Tumor Suppressor Protein p53 , Homeostasis , Sirtuins/genetics
11.
J Transl Med ; 21(1): 662, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37742032

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute the gold standard treatment for type 2 diabetes mellitus (T2DM). Among them, empagliflozin (EMPA) has shown beneficial effects against heart failure. Because cardiovascular diseases (mainly diabetic cardiomyopathy) are the leading cause of death in diabetic patients, the use of EMPA could be, simultaneously, cardioprotective and antidiabetic, reducing the risk of death from cardiovascular causes and decreasing the risk of hospitalization for heart failure in T2DM patients. Interestingly, recent studies have shown that EMPA has positive benefits for people with and without diabetes. This finding broadens the scope of EMPA function beyond glucose regulation alone to include a more intricate metabolic process that is, in part, still unknown. Similarly, this significantly increases the number of people with heart diseases who may be eligible for EMPA treatment. METHODS: This study aimed to clarify the metabolic effect of EMPA on the human myocardial cell model by using orthogonal metabolomics, lipidomics, and proteomics approaches. The untargeted and multivariate analysis mimicked the fasting blood sugar level of T2DM patients (hyperglycemia: HG) and in the average blood sugar range (normal glucose: NG), with and without the addition of EMPA. RESULTS: Results highlighted that EMPA was able to modulate and partially restore the levels of multiple metabolites associated with cellular stress, which were dysregulated in the HG conditions, such as nicotinamide mononucleotide, glucose-6-phosphate, lactic acid, FA 22:6 as well as nucleotide sugars and purine/pyrimidines. Additionally, EMPA regulated the levels of several lipid sub-classes, in particular dihydroceramide and triacylglycerols, which tend to accumulate in HG conditions resulting in lipotoxicity. Finally, EMPA counteracted the dysregulation of endoplasmic reticulum-derived proteins involved in cellular stress management. CONCLUSIONS: These results could suggest an effect of EMPA on different metabolic routes, tending to rescue cardiomyocyte metabolic status towards a healthy phenotype.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Myocytes, Cardiac , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose , Multiomics , Glucose/pharmacology
12.
Cells ; 12(7)2023 04 02.
Article in English | MEDLINE | ID: mdl-37048148

ABSTRACT

Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.


Subject(s)
Histone Acetyltransferases , Histones , Neoplasms , Humans , Chromatin , Histone Acetyltransferases/metabolism , Histones/metabolism , Neoplasms/genetics
13.
Semin Cancer Biol ; 92: 84-101, 2023 07.
Article in English | MEDLINE | ID: mdl-37003397

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.


Subject(s)
Epigenomics , Leukemia, Myeloid, Acute , Humans , Child , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Prognosis , Mutation
14.
J Transl Med ; 21(1): 32, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650542

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) and prostate cancer (PCa) are among the most prevalent malignant tumors worldwide. There is now a comprehensive understanding of metabolic reprogramming as a hallmark of cancer. Fatty acid synthase (FASN) is a key regulator of the lipid metabolic network, providing energy to favor tumor proliferation and development. Whereas the biological role of FASN is known, its response and sensitivity to inhibition have not yet been fully established in these two cancer settings. METHODS: To evaluate the association between FASN expression, methylation, prognosis, and mutational profile in PDAC and PCa, we interrogated public databases and surveyed online platforms using TCGA data. The STRING database was used to investigate FASN interactors, and the Gene Set Enrichment Analysis platform Reactome database was used to perform an enrichment analysis using data from RNA sequencing public databases of PDAC and PCa. In vitro models using PDAC and PCa cell lines were used to corroborate the expression of FASN, as shown by Western blot, and the effects of FASN inhibition on cell proliferation/cell cycle progression and mitochondrial respiration were investigated with MTT, colony formation assay, cell cycle analysis and MitoStress Test. RESULTS: The expression of FASN was not modulated in PDAC compared to normal pancreatic tissues, while it was overexpressed in PCa, which also displayed a different level of promoter methylation. Based on tumor grade, FASN expression decreased in advanced stages of PDAC, but increased in PCa. A low incidence of FASN mutations was found for both tumors. FASN was overexpressed in PCa, despite not reaching statistical significance, and was associated with a worse prognosis than in PDAC. The biological role of FASN interactors correlated with lipid metabolism, and GSEA indicated that lipid-mediated mitochondrial respiration was enriched in PCa. Following validation of FASN overexpression in PCa compared to PDAC in vitro, we tested TVB-2640 as a FASN inhibitor. PCa proliferation arrest was modulated by FASN inhibition in a dose- and time-dependent manner, whereas PDAC proliferation was not altered. In line with this finding, mitochondrial respiration was found to be more affected in PCa than in PDAC. FASN inhibition interfered with metabolic signaling causing lipid accumulation and affecting cell viability with an impact on the replicative processes. CONCLUSIONS: FASN exhibited differential expression patterns in PDAC and PCa, suggesting a different evolution during cancer progression. This was corroborated by the fact that both tumors responded differently to FASN inhibition in terms of proliferative potential and mitochondrial respiration, indicating that its use should reflect context specificity.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Prostatic Neoplasms , Male , Humans , Multiomics , Prostate/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Prostatic Neoplasms/genetics , Lipids , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Pancreatic Neoplasms
15.
Int J Cancer ; 153(3): 464-475, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36444503

ABSTRACT

Chromatin has an extremely flexible structure that allows the fine regulation of gene expression. To orchestrate this process, small chemical modifications are dynamically added or removed on DNA, RNA and histone substrates. Epigenetic modifications govern a plethora of key cellular functions, whose dysregulation contributes to oncogenesis. The interrelationship between (irreversible) genetic mutations and (reversible) epigenetic alterations and how this crosstalk regulates gene expression has long been a major area of interest. Marks modulating the RNA code (epitranscriptome), such as the well-studied N6 -methyladenosine (m6 A), are known to influence stability, metabolism and life cycle of many mRNAs, including cancer-associated transcripts. Together, epigenetic and epitranscriptomic pathways therefore control the entire cellular expression profile and, eventually, cell fate. Recently, previously undescribed crosstalk between these two pathways has started to be unrevealed. For example, m6 A and its effectors cooperate with histone modifications to localize chromatin-modifying complexes to their target regions. Epigenetic marks governing the expression of m6 A factors can also be found at specific genetic loci. m6 A itself can mark noncoding RNAs (including lncRNAs, circRNAs and miRNAs), influencing their structure, maturation and function. These interactions affect both cell physiology and pathology. Clear evidence that dysregulation of this network plays a role in cancer has emerged, suggesting a new layer of complexity in the landscape of gene expression. Here, we summarize current knowledge on the interplay between m6 A epitranscriptome and epigenome, focusing on cancer processes. We also discuss strategies to target m6 A machinery for future therapeutic intervention.


Subject(s)
MicroRNAs , Neoplasms , Humans , Epigenome , Epigenesis, Genetic , Neoplasms/genetics , Neoplasms/metabolism , Chromatin/genetics
16.
Diabetes Res Clin Pract ; 191: 110066, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36058441

ABSTRACT

AIM: miRNA-21 is a crucial regulator of developing cardiac diseases, but its role is still controversial, and therefore it is necessary to clarify, at cardiac level, its involvement in high glucose induced-acute and chronic cardiac damage. METHODS: Human ventricular cardiac myoblasts AC16, treated and not with miRNA-21 inhibitor, were exposed to high glucose for 2 and 7 days, and the expression of damage markers were investigated. Further, cardiac energetic metabolism was evaluated by measuring both the expression of glucose transporters and lipids regulators. RESULTS: Short-term high glucose treatment induced a significant increase in miRNA-21 expression (p < 0.05) that was associated with an increase in hydrogen ion flux and energy potential dissipation without any change in energy production or increase in genes expression involved in cellular damage. miRNA-21 reduction observed (p < 0.05) at 7 days of high glucose treatment, induced the activation of damage pathways and compromised mitochondrial function (p < 0.05). CONCLUSION: In human cardiomyocytes, the abundance of miRNA-21 takes part in first defense mechanism against cardiac insult and its cardioprotective effect depends on time of exposure to injury. Moreover, miRNA-21 regulates mitochondrial respiration and the ability of cells to select the most appropriate substrate for ATP production in given environment.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Apoptosis , Cell Line , Glucose/metabolism , Glucose/pharmacology , Humans , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Protons
17.
Mol Metab ; 64: 101561, 2022 10.
Article in English | MEDLINE | ID: mdl-35944897

ABSTRACT

OBJECTIVE: Aberrant activity of androgen receptor (AR) is the primary cause underlying development and progression of prostate cancer (PCa) and castration-resistant PCa (CRPC). Androgen signaling regulates gene transcription and lipid metabolism, facilitating tumor growth and therapy resistance in early and advanced PCa. Although direct AR signaling inhibitors exist, AR expression and function can also be epigenetically regulated. Specifically, lysine (K)-specific demethylases (KDMs), which are often overexpressed in PCa and CRPC phenotypes, regulate the AR transcriptional program. METHODS: We investigated LSD1/UTX inhibition, two KDMs, in PCa and CRPC using a multi-omics approach. We first performed a mitochondrial stress test to evaluate respiratory capacity after treatment with MC3324, a dual KDM-inhibitor, and then carried out lipidomic, proteomic, and metabolic analyses. We also investigated mechanical cellular properties with acoustic force spectroscopy. RESULTS: MC3324 induced a global increase in H3K4me2 and H3K27me3 accompanied by significant growth arrest and apoptosis in androgen-responsive and -unresponsive PCa systems. LSD1/UTX inhibition downregulated AR at both transcriptional and non-transcriptional level, showing cancer selectivity, indicating its potential use in resistance to androgen deprivation therapy. Since MC3324 impaired metabolic activity, by modifying the protein and lipid content in PCa and CRPC cell lines. Epigenetic inhibition of LSD1/UTX disrupted mitochondrial ATP production and mediated lipid plasticity, which affected the phosphocholine class, an important structural element for the cell membrane in PCa and CRPC associated with changes in physical and mechanical properties of cancer cells. CONCLUSIONS: Our data suggest a network in which epigenetics, hormone signaling, metabolite availability, lipid content, and mechano-metabolic process are closely related. This network may be able to identify additional hotspots for pharmacological intervention and underscores the key role of KDM-mediated epigenetic modulation in PCa and CRPC.


Subject(s)
Histone Demethylases , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/therapeutic use , Androgens/metabolism , Gene Expression Regulation, Neoplastic , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Lipids , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Proteomics
18.
Cancers (Basel) ; 14(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35954462

ABSTRACT

Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.

19.
Mol Cancer ; 21(1): 125, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681235

ABSTRACT

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Subject(s)
Chromatin , Leukemia, Myeloid, Acute , Polycomb Repressive Complex 1 , Chromatin/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35551034

ABSTRACT

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Subject(s)
Histone Deacetylase Inhibitors , Hydroxamic Acids , Animals , Cell Survival , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Mice , Rats , Repressor Proteins , Tubulin/metabolism , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...