Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10620, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391536

ABSTRACT

Artificial light at night (ALAN) is a globally spreading anthropogenic stressor, affecting more than 20% of coastal habitats. The alteration of the natural light/darkness cycle is expected to impact the physiology of organisms by acting on the complex circuits termed as circadian rhythms. Our understanding of the impact of ALAN on marine organisms is lagging behind that of terrestrial ones, and effects on marine primary producers are almost unexplored. Here, we investigated the molecular and physiological response of the Mediterranean seagrass, Posidonia oceanica (L.) Delile, as model to evaluate the effect of ALAN on seagrass populations established in shallow waters, by taking advantage of a decreasing gradient of dim nocturnal light intensity (from < 0.01 to 4 lx) along the NW Mediterranean coastline. We first monitored the fluctuations of putative circadian-clock genes over a period of 24 h along the ALAN gradient. We then investigated whether key physiological processes, known to be synchronized with day length by the circadian rhythm, were also affected by ALAN. ALAN influenced the light signalling at dusk/night in P. oceanica, including that of shorter blue wavelengths, through the ELF3-LUX1-ZTL regulatory network, and suggested that the daily perturbation of internal clock orthologs in seagrass might have caused the recruitment of PoSEND33 and PoPSBS genes to mitigate the repercussions of a nocturnal stress on photosynthesis during the day. A long-lasting impairment of gene fluctuations in sites characterised by ALAN could explain the reduced growth of the seagrass leaves when these were transferred into controlled conditions and without lighting during the night. Our results highlight the potential contribution of ALAN to the global loss of seagrass meadows, posing questions about key interactions with a variety of other human-related stressors in urban areas, in order to develop more efficient strategies to globally preserve these coastal foundation species.


Subject(s)
Acceptance and Commitment Therapy , Alismatales , Humans , Light Pollution , Alismatales/genetics , Anthropogenic Effects , Gene Expression
2.
Mar Environ Res ; 183: 105795, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36379170

ABSTRACT

Coastal environments experience both natural and anthropogenic inputs of nitrogen (N) and phosphorus (P). Agricultural fertilisers, organic run-offs, and edaphic characteristics of coastal environments may generate mosaics of nutrient concentrations that ultimately influence the coastal primary productivity. Here, we experimentally assessed the effects of repeated pulses of N and P on multiple components of ecological stability (sensitivity, resilience, temporal stability and recovery) of phototrophic rocky intertidal biofilm. We performed a repeated-pulses factorial experiment crossing increasing N and P concentrations chosen to reflect a range of nutrient enrichment conditions, from oligotrophic to eutrophic. N and P, regardless of concentration or whether they occurred in isolation or combination, enhanced biofilm's sensitivity (increased biomass or physiological performance compared to controls) without altering resilience. Our experiment illustrates how the stability of an essential coastal primary producer responds to increasing N and P supply levels. Furthermore, notwithstanding the importance of decomposing the multiple dimensions of stability, the transitory increase of the sole sensitivity indicated that rocky shore biofilm is robust against a wide range of nutrient enrichment.


Subject(s)
Ecosystem , Nitrogen , Phosphorus , Biomass , Biofilms , Eutrophication
3.
Mar Environ Res ; 140: 342-357, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30017202

ABSTRACT

Loss of algal canopies can result in a shift towards a turf-dominated state, where variability in species life-history traits can determine new mechanisms of feedback, and influence the degraded system under variable regimes of disturbance. By focusing on rockpools dominated by Cystoseira brachycarpa, we tested the hypothesis that the alga Dictyopteris polypodioides could take advantage of extreme regimes of disturbance related to storms, and outcompete other turfs through a distinctive combination of life traits. Replacement of the canopy was initially driven by a mix of taxon-specific life-traits and resulting assemblages were susceptible to intense events of disturbance. Subsequently, D. polypodioides dominated removal quadrats, favored by density-dependent abilities to intercept more light and reach larger size than the rest of turf. These new positive feedbacks may contribute to maintain the modified state of the system and influence its ability to withstand extreme abiotic conditions.


Subject(s)
Ecology , Ecosystem , Seaweed , Forests , Mediterranean Sea , Phaeophyceae
4.
Ecology ; 99(8): 1709-1715, 2018 08.
Article in English | MEDLINE | ID: mdl-29797316

ABSTRACT

Developing early warning signals to predict regime shifts in ecosystems is a central issue in current ecological research. While there are many studies addressing temporal early warning indicators, research into spatial indicators is far behind, with field experiments even more rare. Here, we tested the performance of spatial early warning signals in an intertidal macroalgal system, where removal of algal canopies pushed the system toward a tipping point (corresponding to approximately 75% of canopy loss), marking the transition between a canopy- to a turf-dominated state. We performed a two-year experiment where spatial early warning indicators were assessed in transects where the canopy was differentially removed (from 0 to 100%). Unlike Moran correlation coefficient at lag-1, spatial variance, skewness, and spatial spectra at low frequency increased along the gradient of canopy degradation and dropped, or did not show any further increase beyond the transition point from a canopy- to a turf-dominated state (100% canopy removal). Our study provides direct evidence of the suitability of spatial early warning signals to anticipate regime shifts in natural ecosystems, emphasizing the importance of field experiments as a powerful tool to establish causal relationships between environmental stressors and early warning indicators.


Subject(s)
Ecology , Ecosystem
5.
Oecologia ; 172(2): 505-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23104272

ABSTRACT

Despite the progressive accumulation of exotic species in natural communities, little effort has been devoted to elucidating the mechanisms underpinning the coexistence of invaders in environmentally and biologically heterogeneous systems. The exotic seaweeds, Asparagopsis taxiformis and Caulerpa racemosa, exhibit a segregated distribution on Mediterranean rocky reefs. A. taxiformis dominates assemblages in topographically complex habitats, but is virtually absent on homogenous platforms. In contrast, C. racemosa achieves extensive cover in both types of habitat. We assessed whether differences in their distribution were generated by biotic interactions (between invaders and/or between invaders and natives) or by environmental constraints. Three models were proposed to explain seaweed distribution patterns: (1) invaders inhibit one another; (2) native assemblages, differing between complex and simple habitats, prevent the establishment/spread of one invader, but not that of the other; and (3) environmental conditions regulate the establishment/persistence of the seaweeds in different habitats. We removed the dominant invader and resident assemblages in each type of habitat. Moreover, A. taxiformis thalli were transplanted into the habitat dominated by C. racemosa to establish whether its failure to colonize the simple habitat was due to the lack of propagules or post-recruitment mortality. C. racemosa spread in the complex habitat was not influenced by the removal of resident assemblages, but it was slightly enhanced by A. taxiformis removal. Neither C. racemosa removal nor that of resident assemblages promoted A. taxiformis colonization and survival in simple habitats. Our results suggest that heterogeneity in environmental conditions can promote invader coexistence by mitigating the effects of negative biotic interactions. Therefore, the accumulation of introduced species in native communities does not necessarily imply established invaders fostering further invasion.


Subject(s)
Caulerpa/physiology , Introduced Species , Rhodophyta/physiology , Seaweed , Ecosystem , Mediterranean Sea , Models, Biological , Population Dynamics
6.
Ecology ; 92(7): 1399-406, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21870613

ABSTRACT

Understanding how species interactions drive succession is a key issue in ecology. In this study we show the utility of combining the concepts and methodologies developed within the biodiversity-ecosystem functioning research program with J. H. Connell and R. O. Slatyer's classic framework to understand succession in assemblages where multiple interactions between early and late colonists may include both inhibitory and facilitative effects. We assessed the net effect of multiple species interactions on successional changes by manipulating the richness, composition, and abundance of early colonists in a low-shore assemblage of algae and invertebrates of the northwestern Mediterranean. Results revealed how concomitant changes in species richness and abundance can strongly alter the net effect of inhibitory vs. facilitative interactions on succession. Increasing richness of early colonists inhibited succession, but only under high levels of initial abundance, probably reflecting the formation of a highly intricate matrix that prevented further colonization. In contrast, increasing initial abundance of early colonists tended to facilitate succession under low richness. Thus, changes in abundance of early colonists mediated the effects of richness on succession.


Subject(s)
Biodiversity , Models, Biological , Animals , Chlorophyta/physiology , Cyanobacteria/physiology , Italy , Oceans and Seas , Population Dynamics , Rhodophyta/physiology , Time Factors
7.
Ecol Appl ; 20(3): 830-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20437967

ABSTRACT

Marine reserves are assumed to protect a wide range of species from deleterious effects stemming from exploitation. However, some species, due to their ecological characteristics, may not respond positively to protection. Very little is known about the effects of life history and ecological traits (e.g., mobility, growth, and habitat) on responses of fish species to marine reserves. Using 40 data sets from 12 European marine reserves, we show that there is significant variation in the response of different species of fish to protection and that this heterogeneity can be explained, in part, by differences in their traits. Densities of targeted size-classes of commercial species were greater in protected than unprotected areas. This effect of protection increased as the maximum body size of the targeted species increased, and it was greater for species that were not obligate schoolers. However, contrary to previous theoretical findings, even mobile species with wide home ranges benefited from protection: the effect of protection was at least as strong for mobile species as it was for sedentary ones. Noncommercial bycatch and unexploited species rarely responded to protection, and when they did (in the case of unexploited bentho-pelagic species), they exhibited the opposite response: their densities were lower inside reserves. The use of marine reserves for marine conservation and fisheries management implies that they should ensure protection for a wide range of species with different life-history and ecological traits. Our results suggest this is not the case, and instead that effects vary with economic value, body size, habitat, depth range, and schooling behavior.


Subject(s)
Behavior, Animal , Conservation of Natural Resources , Fishes , Animals , Body Size , Ecosystem , Europe , Fisheries , Models, Biological , Population Density , Territoriality
8.
Mar Environ Res ; 55(5): 429-58, 2003 May.
Article in English | MEDLINE | ID: mdl-12628195

ABSTRACT

Marine protected areas (MPAs) are increasingly used as a management tool to preserve species and habitats. Testing hypotheses about the effectiveness of MPAs is important for their implementation and to identify informative criteria to support management decisions. This study tested the general proposition that MPAs affected assemblages of algae and invertebrates between 0.0 and 0.5 m above the mean low water level of rocky coasts on two islands in the Tuscan Archipelago (northwest Mediterranean). Protection was concentrated mainly on the west coasts of the islands, raising the possibility that neither the full range of assemblages nor the relevant scales of variation were properly represented within MPAs. This motivated the comparison of assemblages on opposite sides of islands (habitats). The effects of MPAs and habitat were assessed with a multifactorial sampling design; hypotheses were tested about differences in structure of assemblages, in mean abundance of common taxa and in univariate and multivariate measures of spatial variation. The design consisted of three replicate shores for each condition of protected and reference areas on the west side of each island and three unprotected shores on the eastern side. Assemblages were sampled independently four times on each island between June 1999 and January 2001. At each time of sampling two sites were selected randomly at each of two tidal heights to represent midshore and lowshore assemblages on each shore. Estimates of abundance were obtained using non-destructive sampling methods from five replicate 20x20 cm quadrats at each site. Results indicated differences among habitats in structure of assemblages, in mean abundance of common taxa and in univariate and multivariate measures of spatial variation at the scale of shores. Most of these patterns were inconsistent with the predicted effect of management through MPAs. The data suggest that designation of MPAs in the Tuscan Archipelago should proceed through management of multiple shores and types of habitat selected to guarantee protection to a representative sample of assemblages and to the processes responsible for maintenance of spatial patchiness at different scales. This study also shows that considerations of spatial heterogeneity are important to underpin management decisions about the number, size and location of MPAs.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environment Design , Marine Biology , Animals , Environmental Monitoring , Eukaryota , Geological Phenomena , Geology , Invertebrates , Mediterranean Region , Reference Values
9.
J Exp Mar Biol Ecol ; 255(1): 1-19, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11090849

ABSTRACT

The extensive presence of artificial reefs in marine coastal habitats demands a better understanding of the extent to which these structures can be considered surrogates of natural rocky shores for populations of plants and animals. The primary aim of this study was to test the hypothesis that removing limpets from the midlittoral of artificial breakwaters in the northwest Mediterranean led to changes in assemblages similar to those observed on rocky shores in the same area. Orthogonal combinations of the presence/absence of two species of limpets, P. aspera and P rustica, were produced using manual removals from June 1997 to February 1998. To test the hypothesis that the effects of limpets were variable at spatial scales comparable to those investigated on rocky shores, we repeated the experiment at two locations tens of kilometres apart, and on two reefs within each location a few kilometres apart. The results revealed strong and relatively consistent negative effects of limpets on filamentous algae, whereas interactions with other members of assemblages were complex and variable. Several taxa (Cyanophyta, encrusting and articulated coralline algae, Ralfsia and Rissoella) were abundant at one location but nearly absent at the other. This large-scale variability in patterns of distribution generated inconsistencies in the effects of limpets between locations. Within locations, several effects of P. aspera and P. rustica were observed, ranging from independent effects on some organisms, to additive or interactive effects on others. Apparently, the removal of filamentous algae by limpets resulted in positive indirect effects on Ralfsia and Rissoella. Collectively, these effects were comparable to those described for rocky shores in the northwest Mediterranean. The processes accounting for large-scale variation in grazing, however, appeared different between the natural and the artificial habitat.

10.
Nature ; 407(6802): 370-4, 2000 Sep 21.
Article in English | MEDLINE | ID: mdl-11014191

ABSTRACT

Food-web models use the effect size of trophic interactions to predict consumer-resource dynamics. These models anticipate that strong effects of consumers increase spatial and temporal variability in abundance of species, whereas weak effects dampen fluctuations. Empirical evidence indicates that opposite patterns may occur in natural assemblages. Here I show that spatial variance in the distribution of resource populations is sensitive to changes in the variance of the trophic interaction, in addition to the mean effect of consumers, relative to other causes of spatial variability. Simulations indicate that both strong and weak direct effects of consumers can promote spatial variability in abundance of resources, but only trophic interactions with a large mean effect size can reduce variation. Predictions of the model agree with the results of repeated field experiments and are consistent with data from published consumer-resource interactions, proving to be robust across widely varying environmental conditions and species' life histories. Thus, food-web models that embody variance in trophic interactions may have increased capacity to explain the wide range of effects of consumers documented in empirical studies.


Subject(s)
Ecology , Food Chain , Models, Biological , Monte Carlo Method
11.
Oecologia ; 123(3): 406-417, 2000 May.
Article in English | MEDLINE | ID: mdl-28308596

ABSTRACT

This study examined the interactive effects of grazing by limpets and inclination of the substratum in maintaining differences between mid-shore and low-shore assemblages of algae in the northwest Mediterranean, at different scales of space and through time. Alternative models leading to different predictions about these effects were proposed and tested. Limpets were excluded by fences from areas of the substratum at mid levels on the shore. The response of algal assemblages to this manipulation was compared with control and enclosure plots at the same level, and with unmanipulated plots in the low shore where limpets are less abundant. The effects of limpets were examined at several replicated sites (0.1-4 km apart) for each slope of the substratum (nearly horizontal vs vertical), at different locations (hundreds of kilometres apart) and at different times. Individual taxa responded differently to limpet exclusion. The percentage cover of the coarsely branched and filamentous algae increased significantly in exclosure plots, in some loser reaching values found on the low shore. These patterns, however, varied greatly from shore to shore and significant effects were found both on horizontal and vertical substrata. Multivariate analyses indicated that grazing by limpets accounted for about 20% of the differences between mid-shore and low-shore assemblages. This effect was independent of substratum inclination and was consistent in space and time, suggesting that physical conditions were not as stressful for macroalgae on vertical substrata as initially supposed. Variable recruitment of algae is proposed as a possible explanation for the lack of consistency in the effects of limpets at the scale of the shore. The results of this study emphasize the need for multiple-scale analyses of the interactive effects of physical and biological factors to understand the organization of natural assemblages.

12.
Oecologia ; 123(2): 265-274, 2000 May.
Article in English | MEDLINE | ID: mdl-28308731

ABSTRACT

This study focuses on succession of macroalgae in littoral rock pools on the west coast of Italy. Previous studies in this system indicated that either canopy algae or turf-forming algae may dominate late in succession. Priority effects and non-hierarchical interactions have been proposed as possible explanations for these patterns. From previous knowledge on the timing of reproduction and recruitment of the two groups of algae and their interactions, I predicted that: (1) canopy algae would dominate patches of substratum cleared during their main period of recruitment (between April and July); (2) the turf-forming algae, although initially present, would be replaced by canopies in these patches; (3) turf-forming algae would characterise both the early stages of colonisation and the mature assemblage in patches cleared before or after the main period of recruitment of canopy algae, and (4) succession would be more consistent in space (i.e. canalised) in the presence of canopy algae than when the turf-forming plants achieve dominance. These predictions were tested in a multifactorial experiment where patches of substratum were cleared in three different periods (before, during and after the main period of recruitment of canopy algae), on three dates within each period and in two replicate pools in each date. Univariate and multivariate analyses indicated that variability at early stages of colonisation dictated much of the subsequent dynamics in this system. Predictions 1-3 were supported by the results, but only at a gross level of taxonomic resolution. Patterns of colonisation of individual species of turf-forming algae were unpredictable due to large small-scale spatial and temporal variation in abundance. Prediction 4 was not supported by the results. This study indicated that knowledge of the life-histories and ecology of individual populations is crucial to increase the accuracy and precision of ecological models that attempt to predict succession in variable systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...