Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Circ Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847080

ABSTRACT

BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a, nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.

2.
NPJ Regen Med ; 9(1): 17, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684697

ABSTRACT

Historically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men. Mechanisms governing sex-specific cardiac reparative activity in BMSCs, with and without the influence of sex hormones, remain unexplored. To discover these mechanisms, Male (M), female (F), and ovariectomized female (OVX) mice-derived EPCs were subjected to a series of molecular and epigenetic analyses followed by in vivo functional assessments of cardiac repair. F-EPCs and OVX EPCs show a lower inflammatory profile and promote enhanced cardiac reparative activity after intra-cardiac injections in a male mouse model of myocardial infarction (MI). Epigenetic sequencing revealed a marked difference in the occupancy of the gene repressive H3K9me3 mark, particularly at transcription start sites of key angiogenic and proinflammatory genes in M-EPCs compared with F-EPCs and OVX-EPCs. Our study unveiled that functional sex differences in EPCs are, in part, mediated by differential epigenetic regulation of the proinflammatory and anti-angiogenic gene CCL3, orchestrated by the control of H3K9me3 by histone methyltransferase, G9a/Ehmt2. Our research highlights the importance of considering the sex of donor cells for progenitor-based tissue repair.

3.
Life Sci ; 309: 121003, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36181865

ABSTRACT

AIMS: Macrophages are crucial for the initiation and resolution of an inflammatory response. Non-coding circular RNAs are ubiquitously expressed in mammalian tissue, highly conserved among species, and recently implicated in the regulation of macrophage activation. We sought to determine whether circRNAs modulate monocyte/macrophage biology and function. MATERIALS AND METHODS: We performed circRNA microarray analyses to assess transcriptome changes using RNA isolated from bone marrow derived macrophages polarized to a pro-inflammatory phenotype (INFγ + TNFα) or an anti-inflammatory phenotype (IL-10, IL-4, and TGF-ß). Among differentially expressed circRNAs, circ-Cdr1as was chosen for further investigation. Additionally, we performed loss or gain of function studies to investigate if circ-Cdr1as is involved in phenotypic switching. For gain of function, we overexpressed circ-Cdr1as using pc3.1 plasmid with laccase2 flanking regions to promote circularization. For loss of function, we used a lentiviral short hairpin RNA targeting the circ-Cdr1as splicing junction. KEY FINDINGS: Among circRNAs that are highly conserved and differentially expressed in pro- and anti-inflammatory lineages, circ-Cdr1as was one of the most downregulated in pro-inflammatory macrophages and significantly upregulated in anti-inflammatory macrophages in vitro. Overexpression of circ-Cdr1as increased transcription of anti-inflammatory markers and percentage of CD206+ cells in naïve and pro-inflammatory macrophages in vitro. Meanwhile, knockdown decreased transcription of anti-inflammatory markers and increased the percentage of CD86+ cells in naïve and anti-inflammatory macrophages in vitro. SIGNIFICANCE: This study suggests that circ-Cdr1as plays a key role in regulating anti-inflammatory phenotype of macrophages and may potentially be developed as an anti-inflammatory regulator in tissue inflammation.


Subject(s)
MicroRNAs , RNA, Circular , Animals , RNA, Circular/genetics , Tumor Necrosis Factor-alpha/genetics , Interleukin-10/genetics , RNA, Small Interfering , Interleukin-4/genetics , MicroRNAs/genetics , RNA/genetics , Macrophages , Phenotype , Transforming Growth Factor beta/genetics , Mammals/genetics
4.
Theranostics ; 12(9): 4415-4430, 2022.
Article in English | MEDLINE | ID: mdl-35673580

ABSTRACT

Background and Purpose: Myocardial infarction (MI) in diabetic patients results in higher mortality and morbidity. We and others have previously shown that bone marrow-endothelial progenitor cells (EPCs) promote cardiac neovascularization and attenuate ischemic injury. Lately, small extracellular vesicles (EVs) have emerged as major paracrine effectors mediating the benefits of stem cell therapy. Modest clinical outcomes of autologous cell-based therapies suggest diabetes-induced EPC dysfunction and may also reflect their EV derivatives. Moreover, studies suggest that post-translational histone modifications promote diabetes-induced vascular dysfunctions. Therefore, we tested the hypothesis that diabetic EPC-EVs may lose their post-injury cardiac reparative function by modulating histone modification in endothelial cells (ECs). Methods: We collected EVs from the culture medium of EPCs isolated from non-diabetic (db/+) and diabetic (db/db) mice and examined their effects on recipient ECs and cardiomyocytes in vitro, and their reparative function in permanent ligation of left anterior descending (LAD) coronary artery and ischemia/reperfusion (I/R) myocardial ischemic injuries in vivo. Results: Compared to db/+ EPC-EVs, db/db EPC-EVs promoted EC and cardiomyocyte apoptosis and repressed tube-forming capacity of ECs. In vivo, db/db EPC-EVs depressed cardiac function, reduced capillary density, and increased fibrosis compared to db/+ EPC-EV treatments after MI. Moreover, in the I/R MI model, db/+ EPC-EV-mediated acute cardio-protection was lost with db/db EPC-EVs, and db/db EPC-EVs increased immune cell infiltration, infarct area, and plasma cardiac troponin-I. Mechanistically, histone 3 lysine 9 acetylation (H3K9Ac) was significantly decreased in cardiac ECs treated with db/db EPC-EVs compared to db/+ EPC-EVs. The H3K9Ac chromatin immunoprecipitation sequencing (ChIP-Seq) results further revealed that db/db EPC-EVs reduced H3K9Ac level on angiogenic, cell survival, and proliferative genes in cardiac ECs. We found that the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), partly restored diabetic EPC-EV-impaired H3K9Ac levels, tube formation and viability of ECs, and enhanced cell survival and proliferative genes, Pdgfd and Sox12, expression. Moreover, we observed that VPA treatment improved db/db EPC-mediated post-MI cardiac repair and functions. Conclusions: Our findings unravel that diabetes impairs EPC-EV reparative function in the ischemic heart, at least partially, through HDACs-mediated H3K9Ac downregulation leading to transcriptional suppression of angiogenic, proliferative and cell survival genes in recipient cardiac ECs. Thus, HDAC inhibitors may potentially be used to restore the function of diabetic EPC and other stem cells for autologous cell therapy applications.


Subject(s)
Diabetes Mellitus , Endothelial Progenitor Cells , Extracellular Vesicles , Myocardial Infarction , Animals , Diabetes Mellitus/metabolism , Extracellular Vesicles/metabolism , Histones/metabolism , Humans , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , SOXC Transcription Factors/metabolism
5.
J Am Heart Assoc ; 10(10): e019755, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33988033

ABSTRACT

Background Impaired angiogenic abilities of the microvascular endothelial cell (MVEC) play a crucial role in diabetes mellitus-impaired ischemic tissue repair. However, the underlying mechanisms of diabetes mellitus-impaired MVEC function remain unclear. We studied the role of serum-derived small extracellular vesicles (ssEVs) in diabetes mellitus-impaired MVEC function. Methods and Results ssEVs were isolated from 8-week-old male db/db and db/+ mice by ultracentrifugation and size/number were determined by the Nano-sight tracking system. Diabetic ssEVs significantly impaired tube formation and migration abilities of human MVECs. Furthermore, local transplantation of diabetic ssEVs strikingly reduced blood perfusion and capillary/arteriole density in ischemic hind limb of wildtype C57BL/6J mice. Diabetic ssEVs decreased secretion/expression of several pro-angiogenic factors in human MVECs. Mechanistically, expression of enhancer of zest homolog 2 (EZH2), the major methyltransferase responsible for catalyzing H3K27me3 (a transcription repressive maker), and H3K27me3 was increased in MVECs from db/db mice. Diabetic ssEVs increased EZH2 and H3K27me3 expression/activity in human MVECs. Expression of EZH2 mRNA was increased in diabetic ssEVs. EZH2-specific inhibitor significantly reversed diabetic ssEVs-enhanced expression of EZH2 and H3K27me3, impaired expression of angiogenic factors, and improved blood perfusion and vessel density in ischemic hind limb of C57BL/6J mice. Finally, EZH2 inactivation repressed diabetic ssEVs-induced H3K27me3 expression at promoter of pro-angiogenic genes. Conclusions Diabetic ssEVs impair the angiogenic property of MVECs via, at least partially, transferring EZH2 mRNA to MVECs, thus inducing the epigenetic mechanism involving EZH2-enhanced expression of H3K27me3 and consequent silencing of pro-angiogenic genes. Our findings unravel the cellular mechanism and expand the scope of bloodborne substances that impair MVEC function in diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Endothelial Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Extracellular Vesicles/metabolism , Gene Expression Regulation , Microvessels/metabolism , RNA/genetics , Animals , Cell Proliferation , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Endothelial Cells/pathology , Enhancer of Zeste Homolog 2 Protein/biosynthesis , Extracellular Vesicles/pathology , Male , Mice , Mice, Inbred C57BL , Microvessels/pathology
7.
Circ Res ; 126(3): 315-329, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31815595

ABSTRACT

Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.


Subject(s)
Endothelial Progenitor Cells/metabolism , Exosomes/transplantation , Interleukin-10/genetics , Myocardial Infarction/therapy , Protein Serine-Threonine Kinases/metabolism , Wound Healing , Animals , Cells, Cultured , Exosomes/metabolism , Interleukin-10/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Ventricular Function, Left
8.
Nat Commun ; 10(1): 4317, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541092

ABSTRACT

Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI.


Subject(s)
Fibronectins/genetics , Myocardial Infarction/metabolism , Myocardial Ischemia/metabolism , RNA, Circular/metabolism , RNA-Binding Protein FUS/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/physiology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Circular/biosynthesis , RNA, Circular/genetics , RNA-Binding Protein FUS/genetics
9.
JCI Insight ; 52019 07 09.
Article in English | MEDLINE | ID: mdl-31287805

ABSTRACT

Podoplanin, a small mucine-type transmembrane glycoprotein, has been recently shown to be expressed by lymphangiogenic, fibrogenic and mesenchymal progenitor cells in the acutely and chronically infarcted myocardium. Podoplanin binds to CLEC-2, a C-type lectin-like receptor 2 highly expressed by CD11bhigh cells following inflammatory stimuli. Why podoplanin expression appears only after organ injury is currently unknown. Here, we characterize the role of podoplanin in different stages of myocardial repair after infarction and propose a podoplanin-mediated mechanism in the resolution of post-MI inflammatory response and cardiac repair. Neutralization of podoplanin led to significant improvements in the left ventricular functions and scar composition in animals treated with podoplanin neutralizing antibody. The inhibition of the interaction between podoplanin and CLEC-2 expressing immune cells in the heart enhances the cardiac performance, regeneration and angiogenesis post MI. Our data indicates that modulating the interaction between podoplanin positive cells with the immune cells after myocardial infarction positively affects immune cell recruitment and may represent a novel therapeutic target to augment post-MI cardiac repair, regeneration and function.


Subject(s)
Cicatrix/metabolism , Heart Failure/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Glycoproteins/metabolism , Myocardial Infarction/metabolism , Ventricular Remodeling/genetics , Angiotensin II/toxicity , Animals , Antibodies, Neutralizing , Cardiomyopathies/immunology , Cardiomyopathies/metabolism , Cardiomyopathies/surgery , Cell Survival/immunology , Cicatrix/immunology , Echocardiography , Fibrosis , Heart Failure/chemically induced , Heart Failure/immunology , Heart Transplantation , Hemodynamics , Humans , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/immunology , Inflammation/immunology , Macrophages/immunology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Monocytes/immunology , Myocardial Infarction/immunology , Myocardial Ischemia/immunology , Myocardial Ischemia/metabolism , Myocardial Ischemia/surgery , Myocytes, Cardiac , Regeneration/immunology , Vasoconstrictor Agents/toxicity , Ventricular Function, Left , Ventricular Remodeling/immunology
10.
Circulation ; 136(10): 940-953, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28667100

ABSTRACT

BACKGROUND: Activated fibroblasts (myofibroblasts) play a critical role in cardiac fibrosis; however, their origin in the diseased heart remains unclear, warranting further investigation. Recent studies suggest the contribution of bone marrow fibroblast progenitor cells (BM-FPCs) in pressure overload-induced cardiac fibrosis. We have previously shown that interleukin-10 (IL10) suppresses pressure overload-induced cardiac fibrosis; however, the role of IL10 in inhibition of BM-FPC-mediated cardiac fibrosis is not known. We hypothesized that IL10 inhibits pressure overload-induced homing of BM-FPCs to the heart and their transdifferentiation to myofibroblasts and thus attenuates cardiac fibrosis. METHODS: Pressure overload was induced in wild-type (WT) and IL10 knockout (IL10KO) mice by transverse aortic constriction. To determine the bone marrow origin, chimeric mice were created with enhanced green fluorescent protein WT mice marrow to the IL10KO mice. For mechanistic studies, FPCs were isolated from mouse bone marrow. RESULTS: Pressure overload enhanced BM-FPC mobilization and homing in IL10KO mice compared with WT mice. Furthermore, WT bone marrow (from enhanced green fluorescent protein mice) transplantation in bone marrow-depleted IL10KO mice (IL10KO chimeric mice) reduced transverse aortic constriction-induced BM-FPC mobilization compared with IL10KO mice. Green fluorescent protein costaining with α-smooth muscle actin or collagen 1α in left ventricular tissue sections of IL10KO chimeric mice suggests that myofibroblasts were derived from bone marrow after transverse aortic constriction. Finally, WT bone marrow transplantation in IL10KO mice inhibited transverse aortic constriction-induced cardiac fibrosis and improved heart function. At the molecular level, IL10 treatment significantly inhibited transforming growth factor-ß-induced transdifferentiation and fibrotic signaling in WT BM-FPCs in vitro. Furthermore, fibrosis-associated microRNA (miRNA) expression was highly upregulated in IL10KO-FPCs compared with WT-FPCs. Polymerase chain reaction-based selective miRNA analysis revealed that transforming growth factor-ß-induced enhanced expression of fibrosis-associated miRNAs (miRNA-21, -145, and -208) was significantly inhibited by IL10. Restoration of miRNA-21 levels suppressed the IL10 effects on transforming growth factor-ß-induced fibrotic signaling in BM-FPCs. CONCLUSIONS: Our findings suggest that IL10 inhibits BM-FPC homing and transdifferentiation to myofibroblasts in pressure-overloaded myocardium. Mechanistically, we show for the first time that IL10 suppresses Smad-miRNA-21-mediated activation of BM-FPCs and thus modulates cardiac fibrosis.


Subject(s)
Echocardiography/methods , Fibroblasts/metabolism , Fibrosis/metabolism , Heart Diseases/complications , Interleukin-10/genetics , Interleukin-10/metabolism , Myocardium/metabolism , Animals , Bone Marrow , Female , Fibroblasts/pathology , Humans , Mice , Mice, Transgenic , Myocardium/pathology , Signal Transduction
11.
Cardiovasc Res ; 113(8): 938-949, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28371849

ABSTRACT

AIMS: Increased miR-375 levels has been implicated in rodent models of myocardial infarction (MI) and with patients with heart failure. However, no prior study had established a therapeutic role of miR-375 in ischemic myocardium. Therefore, we assessed whether inhibition of MI-induced miR-375 by LNA anti-miR-375 can improve recovery after acute MI. METHODS AND RESULTS: Ten weeks old mice were treated with either control or LNA anti miR-375 after induction of MI by LAD ligation. The inflammatory response, cardiomyocyte apoptosis, capillary density and left ventricular (LV) functional, and structural remodelling changes were evaluated. Anti-miR-375 therapy significantly decreased inflammatory response and reduced cardiomyocyte apoptosis in the ischemic myocardium and significantly improved LV function and neovascularization and reduced infarct size. Repression of miR-375 led to the activation of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) and increased AKT phosphorylation on Thr-308 in experimental hearts. In corroboration with our in vivo findings, our in vitro studies demonstrated that knockdown of miR-375 in macrophages modulated their phenotype, enhanced PDK-1 levels, and reduced pro-inflammatory cytokines expression following LPS challenge. Further, miR-375 levels were elevated in failing human heart tissue. CONCLUSION: Taken together, our studies demonstrate that anti-miR-375 therapy reduced inflammatory response, decreased cardiomyocyte death, improved LV function, and enhanced angiogenesis by targeting multiple cell types mediated at least in part through PDK-1/AKT signalling mechanisms.


Subject(s)
Macrophages/metabolism , MicroRNAs/genetics , Myocardial Infarction/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Remodeling/genetics , Animals , Cell Movement/physiology , Male , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Signal Transduction , Ventricular Dysfunction, Left/genetics , Ventricular Function, Left
12.
J Mol Cell Cardiol ; 89(Pt B): 203-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26549357

ABSTRACT

BACKGROUND: Although autophagy is an essential cellular salvage process to maintain cellular homeostasis, pathological autophagy can lead to cardiac abnormalities and ultimately heart failure. Therefore, a tight regulation of autophagic process would be important to treat chronic heart failure. Previously, we have shown that IL-10 strongly inhibited pressure overload-induced hypertrophy and heart failure, but role of IL-10 in regulation of pathological autophagy is unknown. Here we tested the hypothesis that IL-10 inhibits angiotensin II-induced pathological autophagy and this process, in part, leads to improve cardiac function. METHODS AND RESULTS: Chronic Ang II strongly induced mortality, cardiac dysfunction in IL-10 Knockout mice. IL-10 deletion exaggerated pathological autophagy in response to Ang II treatment. In isolated cardiac myocytes, IL-10 attenuated Ang II-induced pathological autophagy and activated Akt/mTORC1 signaling. Pharmacological or molecular inhibition of Akt and mTORC1 signaling attenuated IL-10 effects on Ang II-induced pathological autophagy. Furthermore, lysosomal inhibition in autophagic flux experiments further confirmed that IL-10 inhibits pathological autophagy via mTORC1 signaling. CONCLUSION: Our data demonstrate a novel role of IL-10 in regulation of pathological autophagy; thus can act as a potential therapeutic molecule for treatment of chronic heart disease.


Subject(s)
Autophagy , Cardiomegaly/pathology , Interleukin-10/metabolism , Angiotensin II/administration & dosage , Animals , Animals, Newborn , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Cardiomegaly/complications , Down-Regulation/drug effects , Enzyme Activation/drug effects , Gene Deletion , Heart Failure/complications , Heart Failure/pathology , Heart Ventricles/pathology , Heart Ventricles/ultrastructure , Interleukin-10/deficiency , Interleukin-10/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Multiprotein Complexes/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...