Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(17): 170401, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412288

ABSTRACT

We describe a comagnetometer employing the f=1 and f=2 ground state hyperfine manifolds of a ^{87}Rb spinor Bose-Einstein condensate as colocated magnetometers. The hyperfine manifolds feature nearly opposite gyromagnetic ratios and thus the sum of their precession angles is only weakly coupled to external magnetic fields, while being highly sensitive to any effect that rotates both manifolds in the same way. The f=1 and f=2 transverse magnetizations and azimuth angles are independently measured by nondestructive Faraday rotation probing, and we demonstrate a 44.0(8) dB common-mode rejection in good agreement with theory. We show how the magnetometer coherence time can be extended to ∼1 s, by using spin-dependent interactions to inhibit hyperfine relaxing collisions between f=2 atoms. The technique could be used in high sensitivity searches for new physics on submillimeter length scales, precision studies of ultracold collision physics, and angle-resolved studies of quantum spin dynamics.

2.
Opt Express ; 26(18): 22783-22792, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184933

ABSTRACT

Multi-core optical fibers are readily used in endoscopic devices to transmit classical images. As an extension to the quantum domain, we study the transmission of the spatial quantum fluctuations of light through a conduit made of the ordered packing of thousands of fibers. Starting from twin beams that are correlated in their local intensity fluctuations, we show that, in the limit of a high density of constituent fiber cores, the intensity-difference squeezing present in arbitrary matching regions of the beams is preserved when one of the beams is sent through the conduit. The capability of using fiber bundles to transport quantum information encoded in the spatial degrees of freedom could bring guided-light technology to the emergent field of quantum imaging.

3.
Opt Express ; 25(17): 19701-19710, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041658

ABSTRACT

We use a coherent fiber bundle to demonstrate the endoscopic absorption imaging of quantum gases. We show that the fiber bundle introduces spurious noise in the picture mainly due to the strong core-to-core coupling. By direct comparison with free-space pictures, we observe that there is a maximum column density that can be reliably measured using our fiber bundle, and we derive a simple criterion to estimate it. We demonstrate that taking care of not exceeding such maximum, we can retrieve exact quantitative information about the atomic system, making this technique appealing for systems requiring isolation form the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...