Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(28): 24813-24830, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483195

ABSTRACT

The effect of point defects and interactions with the substrate are shown by density functional theory calculations to be of significant importance for the structure and functional properties of hexagonal boron nitride (h-BN) films on highly ordered pyrolytic graphite (HOPG) and Ni(111) substrates. The structure, surface chemistry, and electronic properties are calculated for h-BN systems with selected intrinsic, oxygen, and carbon defects and with graphene hybrid structures. The electronic structure of a pristine monolayer of h-BN is dependent on the type of substrate, as h-BN is decoupled electronically from the HOPG surface and acts as bulk-like h-BN, whereas on a Ni(111) substrate, metallic-like behavior is predicted. These different film/substrate systems therefore show different reactivities and defect chemistries. The formation energies for substitutional defects are significantly lower than for intrinsic defects regardless of the substrate, and vacancies formed during film deposition are expected to be filled by either ambient oxygen or carbon from impurities. Significantly lower formation energies for intrinsic and oxygen and carbon substitutional defects were predicted for h-BN on Ni(111). In-plane h-BCN hybrid structures were predicted to be terminated by N-C bonding. Substitutional carbon on the boron site imposes n-type semiconductivity in h-BN, and the n-type character increases significantly for h-BN on HOPG. The h-BN film surface becomes electronically decoupled from the substrate when exceeding monolayer thickness, showing that the surface electronic properties and point defect chemistry for multilayer h-BN films should be comparable to those of a freestanding h-BN layer.

2.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770701

ABSTRACT

The term "nanosheets" has been coined recently to describe supported and free-standing "ultrathin film" materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. A wide variety of synthetic methods are employed for the manufacturing of these NSHs, and they can be categorized into (1) top-down approaches involving exfoliation of layered materials, or (2) bottom-up approaches where crystal growth of nanocomposites takes place in a liquid or gas phase. Of note, polymer template liquid exfoliation (PTLE) methods are the most suitable as they lead to the fabrication of high-performance and stable hybrid NSHs and NSH composites with the appropriate quality, solubility, and properties. Moreover, PTLE methods allow for the production of stimulus-responsive NSHs, whose response is commonly driven by a favorable growth in the appropriate polymer chains onto one side of the NSHs, resulting in the ability of the NSHs to roll up to form nanoscrolls (NSCs), i.e., open tubular structures with tunable interlayer gaps between their walls. On the other hand, this review gives insight into the potential of the stimulus-responsive nanostructures for biosensing and controlled drug release systems, illustrating the last advances in the PTLE methods of synthesis of these nanostructures and their applications.

3.
Chempluschem ; 86(1): 176-183, 2021 01.
Article in English | MEDLINE | ID: mdl-33476099

ABSTRACT

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2 /g. High absolute zeta potential (-44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3-12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 µg/cm2 .

4.
Colloids Surf B Biointerfaces ; 193: 111126, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32422560

ABSTRACT

The detection and separation of small biomolecules from complex mixtures and the possibility of their recovering for further analyses have great benefits for the early diagnosis and prognosis of diseases. Developing simple, sensitive, and cost-effective tools that allow the rapid and accurate assembly and isolation of molecular biomarkers has the potential to improve both patient care and hospital logistic efficiency towards personalized and affordable treatments of diseases.In this work, we presenta method consisting ofUV-vis-spectroscopy assisted-magnetophoresis for the monitoring of DNA hybridization. For this purpose, a magnetic device generating 7.5 T/m uniform magnetic field gradient was designed and incorporated to a commercial spectrophotometer. Different batches of colloidal superparamagnetic particles (SMPs), with different elemental compositions, were functionalized with twenty-mer complementary oligonucleotides, TB1 and TB2. When the functionalized SMPs-TB1 and SMPs-TB2 are mixed and incubated, the hybridization process of TB1 and TB2 occurs resulting in the formation of colloidal aggregates. When brought under the magnetic field, depending on the magnetic strength (Γ) of the formed aggregates, they separate either faster or slower than the non-functionalized SMPs. The difference in magnetic separation time (Δt) is optically monitored by measuring the real time transparency of the suspension at specific wavelengths. The detection of aggregates at concentrations of 0.001% w/v was achieved, showing Δt ranging from 113-228 s. Based on the changes of Δt, the study addresses how electrosteric, magnetic, and hydrogen bonding interactions affect the hybridization process and suggests optimum experimental conditions for accurate monitoring of TB1-TB2 hybridization.


Subject(s)
DNA/chemistry , Magnetite Nanoparticles/chemistry , Nucleic Acid Hybridization , Colloids/chemistry , Magnetic Fields , Particle Size , Spectrophotometry, Ultraviolet , Surface Properties
5.
ACS Appl Mater Interfaces ; 8(48): 33121-33130, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27934129

ABSTRACT

We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10-10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.


Subject(s)
Colloids/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Gold/chemistry , Isothiocyanates/analysis , Isothiocyanates/chemistry , Rosaniline Dyes/analysis , Rosaniline Dyes/chemistry , Silicon/chemistry , Silver/chemistry , Spectrum Analysis, Raman
6.
Nanoscale ; 8(18): 9780-90, 2016 May 14.
Article in English | MEDLINE | ID: mdl-27119383

ABSTRACT

In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a "glass-float" (ukidama) structure.

7.
Nanoscale ; 6(7): 3532-5, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24584692

ABSTRACT

We report a facile single-step synthesis of ternary hybrid nanoparticles (NPs) composed of multiple dumbbell-like iron-silver (FeAg) cores encapsulated by a silicon (Si) shell using a versatile co-sputter gas-condensation technique. In comparison to previously reported binary magneto-plasmonic NPs, the advantage conferred by a Si shell is to bind the multiple magneto-plasmonic (FeAg) cores together and prevent them from aggregation at the same time. Further, we demonstrate that the size of the NPs and number of cores in each NP can be modulated over a wide range by tuning the experimental parameters.


Subject(s)
Magnetics , Nanoparticles/chemistry , Gases/chemistry , Iron/chemistry , Light , Oxidation-Reduction , Povidone/chemistry , Scattering, Radiation , Silicon/chemistry , Silver/chemistry
8.
Langmuir ; 27(11): 7241-9, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21545124

ABSTRACT

This work reports on the nucleation of the ß-phase of poly(vinylidene fluoride) (PVDF) by incorporating CoFe(2)O(4) and NiFe(2)O(4) nanoparticles, leading in this way to the preparation of magnetoelectric composites. The fraction of filler nanoparticles needed to produce the same ß- to α-phase ratio in crystallized PVDF is 1 order of magnitude lower in the cobalt ferrite nanoparticles. The interaction between nanoparticles and PVDF chains induce the all-trans conformation in PVDF segments, and this structure then propagates in crystal growth. The nucleation kinetics is enhanced by the presence of nanoparticles, as corroborated by the increasing number of spherulites with increasing nanoparticle content and by the variations of the Avrami's exponent. Further, the decrease of the crystalline fraction of PVDF with increasing nanoparticle content indicates that an important fraction of polymer chains are confined in interphases with the filler particle.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Polyvinyls/chemistry , Crystallization , Electricity , Kinetics , Magnetics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...