Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 5339, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087718

ABSTRACT

Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders.


Subject(s)
Enzyme Replacement Therapy/methods , Propionic Acidemia/therapy , RNA, Messenger/therapeutic use , Animals , Disease Models, Animal , Glutamates/therapeutic use , Humans , Kinetics , Lipids/chemistry , Liver/enzymology , Methylmalonyl-CoA Decarboxylase/chemistry , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/enzymology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , RNA, Messenger/administration & dosage , RNA, Messenger/genetics
2.
Immunohorizons ; 3(7): 282-293, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31356158

ABSTRACT

Accelerated blood clearance (ABC) is a phenomenon in which certain pharmaceutical agents are rapidly cleared from the blood upon second and subsequent administrations. ABC has been observed for many lipid-delivery vehicles, including liposomes and lipid nanoparticles (LNP). Previous studies have demonstrated a role for humoral responses against the polyethylene glycol motifs in clearance, but significant gaps remain in our understanding of the mechanism of ABC, and strategies for limiting the impact of ABC in a clinical setting have been elusive. mRNA therapeutics have great promise, but require chronic administration in encapsulating delivery systems, of which LNP are the most clinically advanced. In this study, we investigate the mechanisms of ABC for mRNA-formulated LNP in vivo and in vitro. We present evidence that ABC of mRNA-formulated LNP is dramatic and proceeds rapidly, based on a previously unrecognized ability of LNP to directly activate B-1 lymphocytes, resulting in the production of antiphosphorylcholine IgM Abs in response to initial injection. Upon repeated injections, B-2 lymphocytes also become activated and generate a classic anti-polyethylene glycol adaptive humoral response. The ABC response to phosphorylcholine/LNP-encapsulated mRNA is therefore a combination of early B-1 lymphocyte and later B-2 lymphocyte responses.


Subject(s)
Antibody Formation/immunology , B-Lymphocyte Subsets/metabolism , Drug Delivery Systems/methods , Immunity, Humoral/immunology , Lipids/pharmacokinetics , Metabolic Clearance Rate , Nanoparticles/administration & dosage , Animals , Antigens, Surface/immunology , Epitopes/immunology , Immunoglobulin M/immunology , Lipids/administration & dosage , Liposomes/administration & dosage , Liposomes/pharmacokinetics , Lymphocyte Activation/immunology , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Phosphorylcholine/immunology , Phosphorylcholine/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , RNA, Messenger/therapeutic use
3.
Mol Ther ; 27(7): 1242-1251, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31056400

ABSTRACT

Citrin deficiency is an autosomal recessive disorder caused by loss-of-function mutations in SLC25A13, encoding the liver-specific mitochondrial aspartate/glutamate transporter. It has a broad spectrum of clinical phenotypes, including life-threatening neurological complications. Conventional protein replacement therapy is not an option for these patients because of drug delivery hurdles, and current gene therapy approaches (e.g., AAV) have been hampered by immunogenicity and genotoxicity. Although dietary approaches have shown some benefits in managing citrin deficiency, the only curative treatment option for these patients is liver transplantation, which is high-risk and associated with long-term complications because of chronic immunosuppression. To develop a new class of therapy for citrin deficiency, codon-optimized mRNA encoding human citrin (hCitrin) was encapsulated in lipid nanoparticles (LNPs). We demonstrate the efficacy of hCitrin-mRNA-LNP therapy in cultured human cells and in a murine model of citrin deficiency that resembles the human condition. Of note, intravenous (i.v.) administration of the hCitrin-mRNA resulted in a significant reduction in (1) hepatic citrulline and blood ammonia levels following oral sucrose challenge and (2) sucrose aversion, hallmarks of hCitrin deficiency. In conclusion, mRNA-LNP therapy could have a significant therapeutic effect on the treatment of citrin deficiency and other mitochondrial enzymopathies with limited treatment options.


Subject(s)
Citrullinemia/drug therapy , Citrullinemia/metabolism , Drug Delivery Systems/methods , Genetic Therapy/methods , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , RNA, Messenger/therapeutic use , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Gene Knockout Techniques , Glucosephosphate Dehydrogenase/genetics , HeLa Cells , Hep G2 Cells , Humans , Lipids/chemistry , Loss of Function Mutation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Nanoparticles/chemistry , Open Reading Frames/genetics , RNA, Messenger/chemical synthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , Transfection , Treatment Outcome
4.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30879639

ABSTRACT

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Subject(s)
Fabry Disease/genetics , Fabry Disease/therapy , RNA, Messenger/therapeutic use , alpha-Galactosidase/genetics , Animals , Disease Models, Animal , Endocytosis , Enzyme Replacement Therapy , Genetic Therapy , Humans , Lipids/chemistry , Lysosomes/metabolism , Macaca fascicularis , Male , Mice , Mice, Knockout , RNA, Messenger/pharmacokinetics , Tissue Distribution , Trihexosylceramides/metabolism
5.
Mol Ther Nucleic Acids ; 15: 1-11, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30785039

ABSTRACT

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical studies have demonstrated that mRNA delivered intramuscularly (IM) with first-generation lipid nanoparticles (LNPs) generates robust immune responses. Despite progress made over the past several years, there remains significant opportunity for improvement, as the most advanced LNPs were designed for intravenous (IV) delivery of siRNA to the liver. Here, we screened a panel of proprietary biodegradable ionizable lipids for both expression and immunogenicity in a rodent model when administered IM. A subset of compounds was selected and further evaluated for tolerability, immunogenicity, and expression in rodents and non-human primates (NHPs). A lead formulation was identified that yielded a robust immune response with improved tolerability. More importantly for vaccines, increased innate immune stimulation driven by LNPs does not equate to increased immunogenicity, illustrating that mRNA vaccine tolerability can be improved without affecting potency.

6.
Nat Med ; 24(12): 1899-1909, 2018 12.
Article in English | MEDLINE | ID: mdl-30297912

ABSTRACT

Acute intermittent porphyria (AIP) results from haploinsufficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis pathway. Patients with AIP have neurovisceral attacks associated with increased hepatic heme demand. Phenobarbital-challenged mice with AIP recapitulate the biochemical and clinical characteristics of patients with AIP, including hepatic overproduction of the potentially neurotoxic porphyrin precursors. Here we show that intravenous administration of human PBGD (hPBGD) mRNA (encoded by the gene HMBS) encapsulated in lipid nanoparticles induces dose-dependent protein expression in mouse hepatocytes, rapidly normalizing urine porphyrin precursor excretion in ongoing attacks. Furthermore, hPBGD mRNA protected against mitochondrial dysfunction, hypertension, pain and motor impairment. Repeat dosing in AIP mice showed sustained efficacy and therapeutic improvement without evidence of hepatotoxicity. Finally, multiple administrations to nonhuman primates confirmed safety and translatability. These data provide proof-of-concept for systemic hPBGD mRNA as a potential therapy for AIP.


Subject(s)
Genetic Therapy , Hydroxymethylbilane Synthase/genetics , Porphyria, Acute Intermittent/therapy , RNA, Messenger/administration & dosage , Animals , Disease Models, Animal , Female , Haploinsufficiency/genetics , Heme/genetics , Heme/metabolism , Hepatocytes/drug effects , Humans , Hydroxymethylbilane Synthase/therapeutic use , Liver/drug effects , Liver/metabolism , Male , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/pathology , RNA, Messenger/genetics
8.
Mol Ther ; 26(6): 1509-1519, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29653760

ABSTRACT

The success of mRNA-based therapies depends on the availability of a safe and efficient delivery vehicle. Lipid nanoparticles have been identified as a viable option. However, there are concerns whether an acceptable tolerability profile for chronic dosing can be achieved. The efficiency and tolerability of lipid nanoparticles has been attributed to the amino lipid. Therefore, we developed a new series of amino lipids that address this concern. Clear structure-activity relationships were developed that resulted in a new amino lipid that affords efficient mRNA delivery in rodent and primate models with optimal pharmacokinetics. A 1-month toxicology evaluation in rat and non-human primate demonstrated no adverse events with the new lipid nanoparticle system. Mechanistic studies demonstrate that the improved efficiency can be attributed to increased endosomal escape. This effort has resulted in the first example of the ability to safely repeat dose mRNA-containing lipid nanoparticles in non-human primate at therapeutically relevant levels.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Animals , Primates , Rats
9.
Cell Rep ; 21(12): 3548-3558, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262333

ABSTRACT

Isolated methylmalonic acidemia/aciduria (MMA) is a devastating metabolic disorder with poor outcomes despite current medical treatments. Like other mitochondrial enzymopathies, enzyme replacement therapy (ERT) is not available, and although promising, AAV gene therapy can be limited by pre-existing immunity and has been associated with genotoxicity in mice. To develop a new class of therapy for MMA, we generated a pseudoU-modified codon-optimized mRNA encoding human methylmalonyl-CoA mutase (hMUT), the enzyme most frequently mutated in MMA, and encapsulated it into biodegradable lipid nanoparticles (LNPs). Intravenous (i.v.) administration of hMUT mRNA in two different mouse models of MMA resulted in a 75%-85% reduction in plasma methylmalonic acid and was associated with increased hMUT protein expression and activity in liver. Repeat dosing of hMUT mRNA reduced circulating metabolites and dramatically improved survival and weight gain. Additionally, repeat i.v. dosing did not increase markers of liver toxicity or inflammation in heterozygote MMA mice.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Genetic Therapy/methods , Methylmalonyl-CoA Mutase/genetics , Nanoparticles/administration & dosage , RNA, Messenger/genetics , Administration, Intravenous , Animals , Female , Humans , Lipids/chemistry , Liver/metabolism , Male , Methylmalonyl-CoA Mutase/metabolism , Mice , Nanoparticles/chemistry , RNA, Messenger/metabolism
10.
Nano Lett ; 17(9): 5711-5718, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28836442

ABSTRACT

Intracellular delivery of mRNA holds great potential for vaccine1-3 and therapeutic4 discovery and development. Despite increasing recognition of the utility of lipid-based nanoparticles (LNPs) for intracellular delivery of mRNA, particle engineering is hindered by insufficient understanding of endosomal escape, which is believed to be a main limiter of cytosolic availability and activity of the nucleic acid inside the cell. Using a series of CRISPR-based genetic perturbations of the lysosomal pathway, we have identified that late endosome/lysosome (LE/Ly) formation is essential for functional delivery of exogenously presented mRNA. Lysosomes provide a spatiotemporal hub to orchestrate mTOR signaling and are known to control cell proliferation, nutrient sensing, ribosomal biogenesis, and mRNA translation. Through modulation of the mTOR pathway we were able to enhance or inhibit LNP-mediated mRNA delivery. To further boost intracellular delivery of mRNA, we screened 212 bioactive lipid-like molecules that are either enriched in vesicular compartments or modulate cell signaling. Surprisingly, we have discovered that leukotriene-antagonists, clinically approved for treatment of asthma and other lung diseases, enhance intracellular mRNA delivery in vitro (over 3-fold, p < 0.005) and in vivo (over 2-fold, p < 0.005). Understanding LNP-mediated intracellular delivery will inspire the next generation of RNA therapeutics that have high potency and limited toxicity.


Subject(s)
Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , Animals , Cell Line , Endosomes/metabolism , Female , HeLa Cells , Hep G2 Cells , Humans , Lipid Metabolism , Lysosomes/metabolism , Mice, Inbred BALB C , Nanoparticles/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
11.
Bioorg Med Chem Lett ; 25(22): 5172-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26463129

ABSTRACT

Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117. Synthetic challenges limited opportunities for diversification of the naphthyridine core, therefore most of the SAR was focused on a pyridopyrimidine scaffold. The initial diversification at R(1) improved both enzyme and cell potency. Further SAR developed at the R(2) position using the Negishi cross-coupling reaction provided several compounds, among these compounds 22g showed good enzyme potency and cellular potency.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , DNA Ligases/antagonists & inhibitors , NAD/metabolism , Naphthyridines/pharmacology , Pyrimidines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/chemistry , DNA Ligases/chemistry , Haemophilus influenzae/drug effects , Microbial Sensitivity Tests , Naphthyridines/chemical synthesis , Pyrimidines/chemical synthesis , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Structure-Activity Relationship
12.
Antimicrob Agents Chemother ; 59(12): 7743-52, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26438502

ABSTRACT

The objective of this study was to investigate the risk of attenuated efficacy due to adaptive resistance for the siderophore-conjugated monocarbam SMC-3176 in Pseudomonas aeruginosa by using a pharmacokinetic/pharmacodynamic (PK/PD) approach. MICs were determined in cation-adjusted Mueller-Hinton broth (MHB) and in Chelex-treated, dialyzed MHB (CDMHB). Spontaneous resistance was assessed at 2× to 16× the MIC and the resulting mutants sequenced. Efficacy was evaluated in a neutropenic mouse thigh model at 3.13 to 400 mg/kg of body weight every 3 h for 24 h and analyzed for association with free time above the MIC (fT>MIC). To closer emulate the conditions of the in vivo model, we developed a novel assay testing activity mouse whole blood (WB). All mutations were found in genes related to iron uptake: piuA, piuC, pirR, fecI, and pvdS. Against four P. aeruginosa isolates, SMC-3176 displayed predictable efficacy corresponding to the fT>MIC using the MIC in CDMHB (R(2) = 0.968 to 0.985), with stasis to 2-log kill achieved at 59.4 to 81.1%. Efficacy did not translate for P. aeruginosa isolate JJ 4-36, as the in vivo responses were inconsistent with fT>MIC exposures and implied a threshold concentration that was greater than the MIC. The results of the mouse WB assay indicated that efficacy was not predictable using the MIC for JJ 4-36 and four additional isolates, against which in vivo failures of another siderophore-conjugated ß-lactam were previously reported. SMC-3176 carries a risk of attenuated efficacy in P. aeruginosa due to rapid adaptive resistance preventing entry via the siderophore-mediated iron uptake systems. Substantial in vivo testing is warranted for compounds using the siderophore approach to thoroughly screen for this in vitro-in vivo disconnect in P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azetidines/pharmacology , Drug Resistance, Bacterial/genetics , Pseudomonas aeruginosa/metabolism , Siderophores/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Azetidines/pharmacokinetics , Female , Iron/metabolism , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Oligopeptides/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Siderophores/pharmacokinetics , Sulfonamides/pharmacokinetics , beta-Lactamases/metabolism
13.
ACS Med Chem Lett ; 6(5): 537-42, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005529

ABSTRACT

A main challenge in the development of new agents for the treatment of Pseudomonas aeruginosa infections is the identification of chemotypes that efficiently penetrate the cell envelope and are not susceptible to established resistance mechanisms. Siderophore-conjugated monocarbams are attractive because of their ability to hijack the bacteria's iron uptake machinery for transport into the periplasm and their inherent stability to metallo-ß-lactamases. Through development of the SAR we identified a number of modifications to the scaffold that afforded active anti-P. aeruginosa agents with good physicochemical properties. Through crystallographic efforts we gained a better understanding into how these compounds bind to the target penicillin binding protein PBP3 and factors to consider for future design.

14.
J Med Chem ; 58(5): 2195-205, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25658376

ABSTRACT

To identify new agents for the treatment of multi-drug-resistant Pseudomonas aeruginosa, we focused on siderophore-conjugated monocarbams. This class of monocyclic ß-lactams are stable to metallo-ß-lactamases and have excellent P. aeruginosa activities due to their ability to exploit the iron uptake machinery of Gram-negative bacteria. Our medicinal chemistry plan focused on identifying a molecule with optimal potency and physical properties and activity for in vivo efficacy. Modifications to the monocarbam linker, siderophore, and oxime portion of the molecules were examined. Through these efforts, a series of pyrrolidinone-based monocarbams with good P. aeruginosa cellular activity (P. aeruginosa MIC90 = 2 µg/mL), free fraction levels (>20% free), and hydrolytic stability (t1/2 ≥ 100 h) were identified. To differentiate the lead compounds and enable prioritization for in vivo studies, we applied a semi-mechanistic pharmacokinetic/pharmacodynamic model to enable prediction of in vivo efficacy from in vitro data.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Drug Discovery , Monobactams/pharmacology , Monobactams/pharmacokinetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Siderophores/metabolism , Animals , Humans , Male , Monobactams/chemistry , Pseudomonas Infections/microbiology , Rats , Rats, Wistar , Structure-Activity Relationship , beta-Lactamases/chemistry
15.
ACS Med Chem Lett ; 5(11): 1213-8, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25408833

ABSTRACT

In the search for novel Gram-negative agents, we performed a comprehensive search of the AstraZeneca collection and identified a tetrahydropyran-based matrix metalloprotease (MMP) inhibitor that demonstrated nanomolar inhibition of UDP-3-O-(acyl)-N-acetylglucosamine deacetylase (LpxC). Crystallographic studies in Aquifex aeolicus LpxC indicated the tetrahydropyran engaged in the same hydrogen bonds and van der Waals interactions as other known inhibitors. Systematic optimization of three locales on the scaffold provided compounds with improved Gram-negative activity. However, the optimization of LpxC activity was not accompanied by reduced inhibition of MMPs. Comparison of the crystal structure of the native product, UDP-3-O-(acyl)-glucosamine, in Aquifex aeolicus to the structure of a tetrahydropyran-based inhibitor indicates pathways for future optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...