Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 12: 665743, 2021.
Article in English | MEDLINE | ID: mdl-34777268

ABSTRACT

National screening programs use dried blood specimens to detect metabolic disorders or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, gut microbiota metabolites and immunological acute-phase proteins may reveal latent immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by acute-phase proteins, functioning as sensors of microbial immunomodulation and homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, which substantially modulates both the immune system's response and mucosal homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally and via cesarean section, potentially due to microbial immunomodulatory influence. In summary, these findings suggest the supportive role of human gut microbiota in developing and maintaining immune system homeostasis.

2.
Sci Rep ; 11(1): 10880, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035340

ABSTRACT

A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged peptide for absolute quantification is missing. In this study, we used human serum albumin as a model system to compare the quantitative performance of reference SIL protein with four different designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, (iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal quantitative performance, equivalent to the SIL protein.


Subject(s)
Biological Assay/methods , Peptides/chemistry , Proteins/analysis , Amino Acid Sequence , Biological Assay/standards , Humans , Isotope Labeling , Kinetics , Peptides/chemical synthesis , Protein Conformation , Proteins/chemistry , Proteolysis , Proteomics/methods , Reference Standards , Solubility , Solvents , Trypsin/metabolism
3.
Sci Rep ; 11(1): 10222, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986356

ABSTRACT

An aberrant immune response developed early in life may trigger inflammatory bowel disease (IBD) and food allergies (e.g., celiac disease). Fecal levels of immune markers categorize an inflammatory response (e.g., food allergy, autoimmune) paralleled with the initial microbial colonization. The immunoaffinity assays are routinely applied to quantify circulating immune protein markers in blood/serum. However, a reliable, multiplex assay to quantify fecal levels of immune proteins is unavailable. We developed mass spectrometry assays to simultaneously quantify fecal calprotectin, myeloperoxidase, eosinophil-derived neurotoxin, eosinophil cationic protein, alpha-1-antitrypsin 1, and adaptive immunity effectors in 134 neonatal stool swabs. We optimized extraction and proteolytic protocol and validated the multiplex assay in terms of linearity of response (> 100; typically 0.04 to 14.77 µg/mg of total protein), coefficient of determination (R2; > 0.99), the limit of detection (LOD; 0.003 to 0.04 µg/mg of total protein), the limit of quantification (LOQ; 0.009 to 0.122 µg/mg of total protein) and robustness. The median CV of intra- and interday precision was 9.8% and 14.1%, respectively. We quantified breast milk-derived IGHA2 to differentiate meconium from feces samples and to detect the first food intake. An early life profiling of immune markers reflects disrupted intestinal homeostasis, and it is perhaps suitable for pre-symptomatic interception of IBD and food allergies.


Subject(s)
Chemistry Techniques, Analytical/methods , Feces/chemistry , Inflammation/diagnosis , Biomarkers/metabolism , Female , Food Hypersensitivity/etiology , Food Hypersensitivity/metabolism , Humans , Infant, Newborn , Inflammation/microbiology , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Male , Mass Spectrometry/methods , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...