Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 6(33): 5335-5342, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-32254499

ABSTRACT

Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.

2.
Org Electron ; 12(7): 1146-1151, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22899899

ABSTRACT

We present the integration of a natural protein into electronic and optoelectronic devices by using silk fibroin as a thin film dielectric in an organic thin film field-effect transistor (OFET) ad an organic light emitting transistor device (OLET) structures. Both n- (perylene) and p-type (thiophene) silk-based OFETs are demonstrated. The measured electrical characteristics are in agreement with high-efficiency standard organic transistors, namely charge mobility of the order of 10(-2) cm(2)/Vs and on/off ratio of 10(4). The silk-based optolectronic element is an advanced unipolar n-type OLET that yields a light emission of 100nW.

3.
Neuroscience ; 168(4): 926-40, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20026249

ABSTRACT

The physiological ability of the mammalian CNS to integrate peripheral stimuli and to convey information to the body is tightly regulated by its capacity to preserve the ion composition and volume of the perineuronal milieu. It is well known that astroglial syncytium plays a crucial role in such process by controlling the homeostasis of ions and water through the selective transmembrane movement of inorganic and organic molecules and the equilibration of osmotic gradients. Astrocytes, in fact, by contacting neurons and cells lining the fluid-filled compartments, are in a strategic position to fulfill this role. They are endowed with ion and water channel proteins that are localized in specific plasma membrane domains facing diverse liquid spaces. Recent data in rodents have demonstrated that the precise dynamics of the astroglia-mediated homeostatic regulation of the CNS is dependent on the interactions between water channels and ion channels, and their anchoring with proteins that allow the formation of macromolecular complexes in specific cellular domains. Interplay can occur with or without direct molecular interactions suggesting the existence of different regulatory mechanisms. The importance of molecular and functional interactions is pinpointed by the numerous observations that as consequence of pathological insults leading to the derangement of ion and volume homeostasis the cell surface expression and/or polarized localization of these proteins is perturbed. Here, we critically discuss the experimental evidence concerning: (1) molecular and functional interplay of aquaporin 4, the major aquaporin protein in astroglial cells, with potassium and gap-junctional channels that are involved in extracellular potassium buffering. (2) the interactions of aquaporin 4 with chloride and calcium channels regulating cell volume homeostasis. The relevance of the crosstalk between water channels and ion channels in the pathogenesis of astroglia-related acute and chronic diseases of the CNS is also briefly discussed.


Subject(s)
Aquaporins/metabolism , Body Water/metabolism , Brain/metabolism , Ion Channels/metabolism , Spinal Cord/metabolism , Animals , Aquaporin 4/metabolism , Astrocytes/metabolism , Homeostasis/physiology , Humans
4.
Glia ; 57(7): 791-806, 2009 May.
Article in English | MEDLINE | ID: mdl-19031444

ABSTRACT

Endocannabinoids are a family of endogenous signaling molecules that modulate neuronal excitability in the central nervous system (CNS) by interacting with cannabinoid (CB) receptors. In spite of the evidence that astroglial cells also possess CB receptors, there is no information on the role of endocannabinoids in regulating CNS function through the modulation of ion channel-mediated homeostatic mechanisms in astroglial cells. We provide electrophysiological evidence that the two brain endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) markedly depress outward conductance mediated by delayed outward rectifier potassium current (IK(DR)) in primary cultured rat cortical astrocytes. Pharmacological experiments suggest that the effect of AEA does not result from the activation of known CB receptors. Moreover, neither the production of AEA metabolites nor variations in free cytosolic calcium are involved in the negative modulation of IK(DR). We show that the action of AEA is mediated by its interaction with the extracellular leaflet of the plasma membrane. Similar experiments performed in situ in cortical slices indicate that AEA downregulates IK(DR) in complex and passive astroglial cells. Moreover, IK(DR) is also inhibited by AEA in NG2 glia. Collectively, these results support the notion that endocannabinoids may exert their modulation of CNS function via the regulation of homeostatic function of the astroglial syncytium mediated by ion channel activity.


Subject(s)
Arachidonic Acids/metabolism , Astrocytes/physiology , Cerebral Cortex/physiology , Delayed Rectifier Potassium Channels/metabolism , Polyunsaturated Alkamides/metabolism , Potassium/metabolism , Animals , Antigens/metabolism , Calcium/metabolism , Cannabinoid Receptor Modulators/metabolism , Cell Membrane/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cytosol/metabolism , Endocannabinoids , Glycerides/metabolism , Membrane Potentials , Microglia/metabolism , Neurons/metabolism , Proteoglycans/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Cannabinoid/metabolism
5.
Neuroscience ; 148(4): 876-92, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17719182

ABSTRACT

Cell-cell communication in astroglial syncytia is mediated by intracellular Ca(2+) ([Ca(2+)](i)) responses elicited by extracellular signaling molecules as well as by diverse physical and chemical stimuli. Despite the evidence that astrocytic swelling promotes [Ca(2+)](i) elevation through Ca(2+) influx, the molecular identity of the channel protein underlying this response is still elusive. Here we report that primary cultured cortical astrocytes express the transient receptor potential vanilloid-related channel 4 (TRPV 4), a Ca(2+)-permeable cation channel gated by a variety of stimuli, including cell swelling. Immunoblot and confocal microscopy analyses confirmed the presence of the channel protein and its localization in the plasma membrane. TRPV4 was functional because the selective TRPV4 agonist 4-alpha-phorbol 12,13-didecanoate (4alphaPDD) activated an outwardly rectifying cation current with biophysical and pharmacological properties that overlapped those of recombinant human TRPV4 expressed in COS cells. Moreover, 4alphaPDD and hypotonic challenge promoted [Ca(2+)](i) elevation mediated by influx of extracellular Ca(2+). This effect was abolished by low micromolar concentration of the TRPV4 inhibitor Ruthenium Red. Immunofluorescence and immunogold electron microscopy of rat brain revealed that TRPV4 was enriched in astrocytic processes of the superficial layers of the neocortex and in astrocyte end feet facing pia and blood vessels. Collectively, these data indicate that cultured cortical astroglia express functional TRPV4 channels. They also demonstrate that TRPV4 is particularly abundant in astrocytic membranes at the interface between brain and extracerebral liquid spaces. Consistent with its roles in other tissues, these results support the view that TRPV4 might participate in astroglial osmosensation and thus play a key role in brain volume homeostasis.


Subject(s)
Astrocytes/physiology , Gene Expression/physiology , Occipital Lobe/cytology , TRPV Cation Channels/metabolism , Animals , Animals, Newborn , Astrocytes/cytology , Calcium/metabolism , Cell Membrane/metabolism , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Electric Stimulation/methods , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Microscopy, Immunoelectron/methods , Occipital Lobe/metabolism , Occipital Lobe/ultrastructure , Patch-Clamp Techniques , Phorbols/pharmacology , Rats , Reverse Transcriptase Polymerase Chain Reaction/methods , Ruthenium Red/pharmacology , TRPV Cation Channels/genetics , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...