Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 126(2): 219-230, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32185391

ABSTRACT

BACKGROUND AND AIMS: The ecosystem engineers Sphagnum (peat mosses) are responsible for sequestering a large proportion of carbon in northern peatlands. Species may respond differently to hydrological changes, and water level changes may lead to vegetation shifts in peatlands, causing them to revert from sinks to sources of carbon. We aimed to compare species-specific responses to water level drawdown within Sphagnum, and investigate which traits affect water economy in this genus. METHODS: In a mesocosm experiment, we investigated how water level drawdown affected water content (WC) in the photosynthetically active apex of the moss and maximum quantum yield of photosystem II (i.e. Fv/Fm) of 13 Sphagnum species. Structural traits were measured, and eight anatomical traits were quantified from scanning electron microscopy micrographs. KEY RESULTS: Mixed-effects models indicated that at high water level, large leaves were the most influential predictor of high WC, and at low water level WC was higher in species growing drier in the field, with larger hyaline cell pore sizes and total pore areas associated with higher WC. Higher stem and peat bulk density increased WC, while capitulum mass per area and numerical shoot density did not. We observed a clear positive relationship between Fv/Fm and WC in wet-growing species. CONCLUSIONS: While we found that most hummock species had a relatively high water loss resistance, we propose that some species are able to maintain a high WC at drawdown by storing large amounts of water at a high water level. Our result showing that leaf traits are important warrants further research using advanced morphometric methods. As climate change may lead to more frequent droughts and thereby water level drawdowns in peatlands, a mechanistic understanding of species-specific traits and responses is crucial for predicting future changes in these systems.


Subject(s)
Sphagnopsida , Climate Change , Ecosystem , Soil , Water
2.
PLoS One ; 15(2): e0228383, 2020.
Article in English | MEDLINE | ID: mdl-32017783

ABSTRACT

Biological nitrogen (N) fixation is an important process supporting primary production in ecosystems, especially in those where N availability is limiting growth, such as peatlands and boreal forests. In many peatlands, peat mosses (genus Sphagnum) are the prime ecosystem engineers, and like feather mosses in boreal forests, they are associated with a diverse community of diazotrophs (N2-fixing microorganisms) that live in and on their tissue. The large variation in N2 fixation rates reported in literature remains, however, to be explained. To assess the potential roles of habitat (including nutrient concentration) and species traits (in particular litter decomposability and photosynthetic capacity) on the variability in N2 fixation rates, we compared rates associated with various Sphagnum moss species in a bog, the surrounding forest and a fen in Sweden. We found appreciable variation in N2 fixation rates among moss species and habitats, and showed that both species and habitat conditions strongly influenced N2 fixation. We here show that higher decomposition rates, as explained by lower levels of decomposition-inhibiting compounds, and higher phosphorous (P) levels, are related with higher diazotrophic activity. Combining our findings with those of other studies, we propose a conceptual model in which both species-specific traits of mosses (as related to the trade-off between rapid photosynthesis and resistance to decomposition) and P availability, explain N2 fixation rates. This is expected to result in a tight coupling between P and N cycling in peatlands.


Subject(s)
Nitrogen/analysis , Phosphorus/analysis , Sphagnopsida/growth & development , Ecosystem , Forests , Models, Theoretical , Nitrogen Fixation , Photosynthesis , Sphagnopsida/classification , Sphagnopsida/metabolism , Sweden , Symbiosis
3.
Ecol Evol ; 6(10): 3325-41, 2016 May.
Article in English | MEDLINE | ID: mdl-27103989

ABSTRACT

Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade-offs among them. We selected 15 globally important Sphagnum species, representing four sections (subgenera) and a range of peatland habitats. We measured rates of photosynthesis and decomposition in standard laboratory conditions as measures of innate growth and decay potential, and related this to realized growth, production, and decomposition in their natural habitats. In general, we found support for a trade-off between measures of growth and decomposition. However, the relationships are not strong, with r ranging between 0.24 and 0.45 for different measures of growth versus decomposition. Using photosynthetic rate to predict decomposition in standard conditions yielded R (2) = 0.20. Habitat and section (phylogeny) affected the traits and the trade-offs. In a wet year, species from sections Cuspidata and Sphagnum had the highest production, but in a dry year, differences among species, sections, and habitats evened out. Cuspidata species in general produced easily decomposable litter, but their decay in the field was hampered, probably due to near-surface anoxia in their wet habitats. In a principal components analysis, PCA, photosynthetic capacity, production, and laboratory decomposition acted in the same direction. The species were imperfectly clustered according to vegetation type and phylogeny, so that some species clustered with others in the same section, whereas others clustered more clearly with others from similar vegetation types. Our study includes a wider range of species and habitats than previous trait analyses in Sphagnum and shows that while the previously described growth-decay trade-off exists, it is far from perfect. We therefore suggest that our species-specific trait measures offer opportunities for improvements of peatland ecosystem models. Innate qualities measured in laboratory conditions translate differently to field responses. Most dramatically, fast-growing species could only realize their potential in a wet year. The same species decompose fast in laboratory, but their decomposition was more retarded in the field than that of other species. These relationships are crucial for understanding the long-term dynamics of peatland communities.

SELECTION OF CITATIONS
SEARCH DETAIL
...