Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Genom ; 4(7): 100590, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38908378

ABSTRACT

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.


Subject(s)
Haplotypes , Humans , Haplotypes/genetics , Comparative Genomic Hybridization , Genomic Structural Variation/genetics , Genome, Human/genetics , Gene Duplication/genetics
2.
medRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712270

ABSTRACT

Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.

3.
Stem Cell Res ; 74: 103292, 2024 02.
Article in English | MEDLINE | ID: mdl-38154383

ABSTRACT

MECP2 Duplication Syndrome (MDS) is a rare, severe neurodevelopmental disorder arising from duplications in the Xq28 region containing the MECP2 gene that predominantly affects males. We generated five human induced pluripotent stem cell (iPSC) lines from the fibroblasts of individuals carrying between 0.355 and 11.2 Mb size duplications in the chromosomal locus containing MECP2. All lines underwent extensive testing to confirm MECP2 duplication and iPSC-related features such as morphology, pluripotency markers, and trilineage differentiation potential. These lines are a valuable resource for molecular and functional studies of MDS as well as screening for a variety of therapeutic approaches.


Subject(s)
Induced Pluripotent Stem Cells , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2 , Humans , Male , Cell Differentiation , Gene Duplication , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics
4.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873367

ABSTRACT

Background: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions in cis . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes. Results: Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair. Conclusions: These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible loci .

5.
Plant Biotechnol J ; 21(3): 497-505, 2023 03.
Article in English | MEDLINE | ID: mdl-36382992

ABSTRACT

Reducing the saturate content of vegetable oils is key to increasing their utility and adoption as a feedstock for the production of biofuels. Expression of either the FAT5 16 : 0-CoA desaturase from Caenorhabditis elegans, or an engineered cyanobacterial 16 : 0/18 : 0-glycerolipid desaturase, DES9*, in seeds of Arabidopsis (Arabidopsis thaliana) substantially lowered oil saturates. However, because pathway fluxes and regulation of oil synthesis are known to differ across species, translating this transgene technology from the model plant to crop species requires additional investigation. In the work reported here, we found that high expression of FAT5 in seeds of camelina (Camelina sativa) provided only a moderate decrease in saturates, from 12.9% of total oil fatty acids in untransformed controls to 8.6%. Expression of DES9* reduced saturates to 4.6%, but compromised seed physiology and oil content. However, the coexpression of the two desaturases together cooperatively reduced saturates to only 4.0%, less than one-third of the level in the parental line, without compromising oil yield or seedling germination and establishment. Our successful lowering of oil saturates in camelina identifies strategies that can now be integrated with genetic engineering approaches that reduce polyunsaturates to provide optimized oil composition for biofuels in camelina and other oil seed crops.


Subject(s)
Arabidopsis , Brassicaceae , Biofuels , Plants, Genetically Modified/genetics , Brassicaceae/genetics , Arabidopsis/genetics , Fatty Acids/metabolism , Fatty Acid Desaturases/metabolism , Seeds/genetics , Plant Oils/metabolism
6.
Front Plant Sci ; 13: 908608, 2022.
Article in English | MEDLINE | ID: mdl-35720592

ABSTRACT

Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.

7.
J Plant Physiol ; 274: 153717, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35584570

ABSTRACT

Hydroxy fatty acids (HFA) are industrially useful chemical feedstocks that accumulate in seed-storage triacylglycerols (TAG) of several plant species, including castor (Ricinus communis) and Physaria (Physaria fendleri). For researchers, HFA also offer a unique opportunity to trace fatty acid metabolism and modification. Past work producing HFA in Arabidopsis (Arabidopsis thaliana) has demonstrated the importance of isozymes of TAG synthesis from plants that evolved to store HFA and as a result have a high degree of specificity towards HFA substrates. Castor phospholipase A2α (RcPLA2) has specificity for HFA-containing phosphatidylcholine. However, expression of RcPLA2 in HFA-accumulating Arabidopsis line CL37-PLA2 reduced HFA content of TAG. This loss was interpreted as being due to poor ability of Arabidopsis longchain acyl-CoA synthetases (LACSs) to utilize HFAs substrates. LACS enzymes are essential to activate HFA to HFA-CoA for TAG synthesis. Physaria is a close relative of Arabidopsis in the Brassicaceae family. To test the hypothesis that this close relatedness would allow Physaria LACSs to interface successfully with Arabidopsis enzymes of seed lipid metabolism and thereby restore HFA accumulation, we transformed PfLACS4 and PfLACS8 constructs into the CL37-PLA2 line. However, HFA content was not recovered, and biochemical characterization of recombinant PfLACS4 and PfLACS8 indicated that these isozymes have substrate specificities and selectivities that are similar to their Arabidopsis orthologues. These and other results pose an important question about how HFA synthesized on phosphatidylcholine can be transferred into the acyl-CoA pool for TAG synthesis.


Subject(s)
Arabidopsis , Brassicaceae , Acyl Coenzyme A/metabolism , Arabidopsis/metabolism , Brassicaceae/genetics , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Fatty Acids/metabolism , Isoenzymes/metabolism , Phosphatidylcholines/metabolism , Phospholipases A2/analysis , Phospholipases A2/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Seeds , Triglycerides/metabolism
8.
Methods Mol Biol ; 2295: 3-13, 2021.
Article in English | MEDLINE | ID: mdl-34047968

ABSTRACT

Analysis of plant lipids provides insights into a range of biological processes, from photosynthetic membrane function to oil seed engineering. Many lipid extraction protocols are tailored to fit a specific lipid class. Here we describe a procedure for extraction of glycerolipids from vegetative tissue. This procedure is designed for 1 gram of tissue per sample but maybe scaled for larger samples.


Subject(s)
Lipids/isolation & purification , Liquid-Liquid Extraction/methods , Plants/metabolism , Chloroform/chemistry , Glycerol/metabolism , Lipids/analysis , Methanol/chemistry , Seeds/chemistry , Solvents/chemistry , Water/chemistry
9.
Plant J ; 103(1): 83-94, 2020 07.
Article in English | MEDLINE | ID: mdl-31991038

ABSTRACT

Many pathways of primary metabolism are substantially conserved within and across plant families. However, significant differences in organization and fluxes through a reaction network may occur, even between plants in closely related genera. Assessing and understanding these differences is key to appreciating metabolic diversity, and to attempts to engineer plant metabolism for higher crop yields and desired product profiles. To better understand lipid metabolism and seed oil synthesis in canola (Brassica napus), we have characterized four canola homologues of the Arabidopsis (Arabidopsis thaliana) ROD1 gene. AtROD1 encodes phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), the enzyme that catalyzes a major flux of polyunsaturated fatty acids (PUFAs) in oil synthesis. Assays in yeast indicated that only two of the canola genes, BnROD1.A3 and BnROD1.C3, encode active isozymes of PDCT, and these genes are strongly expressed during the period of seed oil synthesis. Loss of expression of BnROD1.A3 and BnROD1.C3 in a double mutant, or by RNA interference, reduced the PUFA content of the oil to 26.6% compared with 32.5% in the wild type. These results indicate that ROD1 isozymes in canola are responsible for less than 20% of the PUFAs that accumulate in the seed oil compared with 40% in Arabidopsis. Our results demonstrate the care needed when translating results from a model species to crop plants.


Subject(s)
Brassica napus/metabolism , Triglycerides/biosynthesis , Arabidopsis/metabolism , Brassica napus/enzymology , Brassica napus/genetics , Fatty Acids, Unsaturated/metabolism , Genes, Plant , Metabolic Networks and Pathways , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , Transcriptome , Transferases (Other Substituted Phosphate Groups)/metabolism
10.
Plant J ; 98(1): 33-41, 2019 04.
Article in English | MEDLINE | ID: mdl-30536486

ABSTRACT

Producing healthy, high-oleic oils and eliminating trans-fatty acids from foods are two goals that can be addressed by reducing activity of the oleate desaturase, FAD2, in oilseeds. However, it is essential to understand the consequences of reducing FAD2 activity on the metabolism, cell biology and physiology of oilseed crop plants. Here, we translate knowledge from studies of fad2 mutants in Arabidopsis (Arabidopsis thaliana) to investigate the limits of non-GMO approaches to maximize oleic acid in the seed oil of canola (Brassica napus), a species that expresses three active FAD2 isozymes. A series of hypomorphic and null mutations in the FAD2.A5 isoform were characterized in yeast (Saccharomyes cerevisiae). Then, four of these were combined with null mutations in the other two isozymes, FAD2.C5 and FAD2.C1. The resulting mutant lines contained 71-87% oleic acid in their seed oil, compared with 62% in wild-type controls. All the mutant lines grew well in a greenhouse, but in field experiments we observed a clear demarcation in plant performance. Mutant lines containing less than 80% oleate in the seed oil were indistinguishable from wild-type controls in growth parameters and seed oil content. By contrast, lines with more than 80% oleate in the seed oil had significantly lower seedling establishment and vigor, delayed flowering and reduced plant height at maturity. These lines also had 7-11% reductions in seed oil content. Our results extend understanding of the B. napusFAD2 isozymes and define the practical limit to increasing oil oleate content in this crop species.


Subject(s)
Brassica napus/genetics , Fatty Acid Desaturases/metabolism , Oleic Acid/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Plant Oils/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica napus/metabolism , Crops, Agricultural , Fatty Acid Desaturases/genetics , Isoenzymes , Loss of Function Mutation , Oxidoreductases Acting on CH-CH Group Donors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Seeds/genetics , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...