Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(10)2023 10 09.
Article in English | MEDLINE | ID: mdl-37892178

ABSTRACT

Objectives In Vitro: To study the effects of GR3027 (golexanolone) on neurosteroid-induced GABA-mediated current responses under physiological GABAergic conditions with recombinant human α5ß3γ2L and α1ß2γ2L GABAA receptors expressed in human embryonic kidney cells, using the response patch clamp technique combined with the Dynaflow™ application system. With α5ß3γ2L receptors, 0.01-3 µM GR3027, in a concentration-dependent manner, reduced the current response induced by 200 nM THDOC + 0.3 µM GABA, as well as the THDOC-induced direct gated effect. GR3027 (1 µM) alone had no effect on the GABA-mediated current response or current in the absence of GABA. With α1ß2γ2L receptors, GR3027 alone had no effect on the GABA-mediated current response or did not affect the receptor by itself. Meanwhile, 1-3 µM GR3027 reduced the current response induced by 200 nM THDOC + 30 µM GABA and 3 µM GR3027 that induced by 200 nM THDOC when GABA was not present. Objectives In Vivo: GR3027 reduces allopregnanolone (AP)-induced decreased learning and anesthesia in male Wistar rats. Rats treated i.v. with AP (2.2 mg/kg) or vehicle were given GR3027 in ratios of 1:0.5 to 1:5 dissolved in 10% 2-hydroxypropyl-beta-cyclodextrin. A dose ratio of AP:GR3027 of at least 1:2.5 antagonized the AP-induced decreased learning in the Morris Water Mase (MWM) and 1:7.5 antagonized the loss of righting reflex (LoR). GR3027 treatment did not change other functions in the rat compared to the vehicle group. Conclusions: GR3027 functions in vitro as an inhibitor of GABAA receptors holding α5ß3γ2L and α1ß2γ2L, in vivo, in the rat, as a dose-dependent inhibitor toward AP's negative effects on LoR and learning in the MWM.


Subject(s)
Neurosteroids , Receptors, GABA-A , Male , Rats , Humans , Animals , GABA Antagonists , Rats, Wistar , Pregnanolone/pharmacology , gamma-Aminobutyric Acid/pharmacology
2.
Biomolecules ; 13(6)2023 06 20.
Article in English | MEDLINE | ID: mdl-37371597

ABSTRACT

Among female rats, some individuals show estrus cycle-dependent irritability/aggressive behaviors, and these individual rats may be used as a model for premenstrual dysphoric disorder (PMDD). We wanted to investigate if these behaviors are related to the estrus cycle phase containing moderately increased levels of positive GABA-A receptor-modulating steroids (steroid-PAM), especially allopregnanolone (ALLO), and if the adverse behavior can be antagonized. The electrophysiology studies in this paper show that isoallopregnanolone (ISO) is a GABA-A-modulating steroid antagonist (GAMSA), meaning that ISO can antagonize the agonistic effects of positive GABA-A receptor-modulating steroids in both α1ß2γ2L and α4ß3δ GABA-A receptor subtypes. In this study, we also investigated whether ISO could antagonize the estrus cycle-dependent aggressive behaviors in female Wistar rats using a resident-intruder test. Our results confirmed previous reports of estrus cycle-dependent behaviors in that 42% of the tested rats showed higher levels of irritability/aggression at diestrus compared to those at estrus. Furthermore, we found that, during the treatment with ISO, the aggressive behavior at diestrus was alleviated to a level comparable to that of estrus. We noticed an 89% reduction in the increase in aggressive behavior at diestrus compared to that at estrus. Vehicle treatment in the same animals showed a minimal effect on the diestrus-related aggressive behavior. In conclusion, we showed that ISO can antagonize Steroid-PAM both in α1ß2γ2L and α4ß3δ GABA-A receptor subtypes and inhibit estrus cycle-dependent aggressive behavior.


Subject(s)
Aggression , Receptors, GABA-A , Rats , Female , Animals , Rats, Wistar , Aggression/physiology , Estrus , Pregnanolone/pharmacology
3.
PLoS One ; 11(3): e0152471, 2016.
Article in English | MEDLINE | ID: mdl-27023444

ABSTRACT

In Down syndrome (DS) or trisomy of chromosome 21, the ß-amyloid (Aß) peptide product of the amyloid precursor protein (APP) is present in excess. Evidence points to increased APP gene dose and Aß as playing a critical role in cognitive difficulties experienced by people with DS. Particularly, Aß is linked to the late-life emergence of dementia as associated with neuropathological markers of Alzheimer's disease (AD). At present, no treatment targets Aß-related pathogenesis in people with DS. Herein we used a vaccine containing the Aß 1-15 peptide embedded into liposomes together with the adjuvant monophosphoryl lipid A (MPLA). Ts65Dn mice, a model of DS, were immunized with the anti-Aß vaccine at 5 months of age and were examined for cognitive measures at 8 months of age. The status of basal forebrain cholinergic neurons and brain levels of APP and its proteolytic products were measured. Immunization of Ts65Dn mice resulted in robust anti-Aß IgG titers, demonstrating the ability of the vaccine to break self-tolerance. The vaccine-induced antibodies reacted with Aß without detectable binding to either APP or its C-terminal fragments. Vaccination of Ts65Dn mice resulted in a modest, but non-significant reduction in brain Aß levels relative to vehicle-treated Ts65Dn mice, resulting in similar levels of Aß as diploid (2N) mice. Importantly, vaccinated Ts65Dn mice showed resolution of memory deficits in the novel object recognition and contextual fear conditioning tests, as well as reduction of cholinergic neuron atrophy. No treatment adverse effects were observed; vaccine did not result in inflammation, cellular infiltration, or hemorrhage. These data are the first to show that an anti-Aß immunotherapeutic approach may act to target Aß-related pathology in a mouse model of DS.


Subject(s)
Amyloid beta-Peptides/immunology , Cognition Disorders/complications , Cognition Disorders/drug therapy , Down Syndrome/complications , Down Syndrome/drug therapy , Vaccines/therapeutic use , Amyloid beta-Peptides/genetics , Animals , Animals, Newborn , Antibodies/metabolism , Atrophy , Behavior, Animal , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Cholinergic Neurons/metabolism , Disease Models, Animal , Gene Expression Regulation , Hemorrhage/pathology , Inflammation/pathology , Male , Memory , Mice, Transgenic , Septal Nuclei/pathology , Vaccination
4.
Horm Behav ; 78: 160-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26497250

ABSTRACT

Chronic stress in various forms increases the risk for cognitive dysfunction, dementia and Alzheimer's disease. While the pathogenesis behind these findings is unknown, growing evidence suggests that chronic increase in neurosteroid levels, such as allopregnanolone, is part of the mechanism. We treated wild-type C57BL/6J mice with allopregnanolone for 5months, using osmotic pumps. This treatment led to moderately increased levels of allopregnanolone, equivalent to that of mild chronic stress. After an interval of no treatment for 1month, female mice showed impaired learning and memory function in the Morris water maze (MWM) in combination with diminished hippocampus weight and increased cerebellum weight, both correlating to MWM performance. Male mice showed a minor reduction in memory function and no differences in brain structure. We conclude that chronic allopregnanolone elevation can lead to cognitive dysfunction and negative brain alterations. We suggest that allopregnanolone could play a key role in the pathogenesis of stress-induced cognitive disturbances and perhaps dementia.


Subject(s)
Hippocampus/drug effects , Hippocampus/pathology , Maze Learning/drug effects , Memory Disorders/chemically induced , Neurotransmitter Agents/pharmacology , Organ Size/drug effects , Pregnanolone/pharmacology , Animals , Behavior, Animal/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/administration & dosage , Pregnanolone/administration & dosage
5.
Psychoneuroendocrinology ; 52: 22-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25459890

ABSTRACT

Allopregnanolone (AP) is an endogenous neurosteroid. It modulates the effect of γ-amino-butyric acid (GABA) on the GABA type A (GABAA) receptor, which leads to increased receptor activity. Since the GABA-system is mainly inhibitory, increased AP activity leads to modulation of neuronal activity. In vitro studies of GABAA receptor activity and in vivo animal studies of sedation have shown that AP-induced effects can be inhibited by another endogenous steroid, namely isoallopregnanolone (ISO). In this study we investigated if ISO can antagonize AP-induced effects in healthy female volunteers, via measurements of saccadic eye velocity (SEV) and self-rated sedation. With a single-blind cross-over design, 12 women were studied on three separate occasions; given AP alone or AP in combination with one of two ISO doses. Congruent with previous reports, AP administration decreased SEV and induced sedation and these effects were diminished by simultaneous ISO administration. Also, the ISO effect modulation was seemingly stronger for SEV than for sedation. These effects were observed already at an ISO dose exposure that was approximately half of that of AP. In conclusion, ISO antagonized AP-induced decrease in SEV and self-reported sedation, probably in a non-competitive manner.


Subject(s)
Anesthetics/pharmacology , Conscious Sedation , Pregnanolone/antagonists & inhibitors , Pregnanolone/pharmacology , Saccades/drug effects , Wakefulness/drug effects , Adult , Anesthetics/blood , Cross-Over Studies , Female , Humans , Pregnanolone/administration & dosage , Pregnanolone/blood , Self Report , Single-Blind Method , Young Adult
6.
Neuropsychobiology ; 68(1): 15-23, 2013.
Article in English | MEDLINE | ID: mdl-23774881

ABSTRACT

BACKGROUND/AIMS: Allopregnanolone or 3α-hydroxy-5α-pregnan-20-one (AlloP) is normally sedative and anxiolytic, but can under provoking circumstances paradoxically induce aggressive behavior. Therefore, it is of particular interest to determine if there is a relationship between an anxiolytic effect and aggressive behavior following AlloP administration. METHOD: Male Wistar rats were housed in triads comprising of 1 young rat (35 days) and 2 older rats (55 days), with the intent of producing a social hierarchy. The triads were sampled for total serum testosterone and submitted to a social challenge in the form of a food competition test (FCT), where the rats competed for access to drinking sweetened milk. At baseline, the younger rats were identified as subordinates. To test for the behavioral effect of AlloP, the subordinate rats were given intravenous AlloP injections of 0.5 and 1 mg/kg. To assess the optimal AlloP effect, 6 intervals (5, 10, 15, 20, 30 and 40 min) between injection and the FCT were used. In separate studies, AlloP was also given by subcutaneous and intraperitoneal administration at 10 and 17 mg/kg. RESULTS: AlloP (1 mg/kg, i.v.) increased drinking time and aggressive behavior in subordinate rats, with a positive correlation between these behaviors. The subcutaneous injection (17 mg/kg) also increased drinking time in subordinate animals. Serum testosterone concentration was higher in dominant compared to subordinate rats, and correlated with drinking time and weight. CONCLUSIONS: AlloP increased drinking time and aggressive behavior, and the correlation indicates a relationship between an anxiolytic effect and aggressive behavior.


Subject(s)
Aggression/drug effects , Anti-Anxiety Agents/pharmacology , Competitive Behavior/drug effects , Feeding Behavior/drug effects , Hierarchy, Social , Pregnanolone/pharmacology , Steroids/pharmacology , Administration, Intravenous , Animals , Anti-Anxiety Agents/administration & dosage , Body Weight/drug effects , Dose-Response Relationship, Drug , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Pregnanolone/administration & dosage , Rats , Rats, Wistar , Steroids/administration & dosage , Testosterone/blood , Time Factors
7.
Curr Alzheimer Res ; 10(1): 38-47, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23157375

ABSTRACT

Previously, we have shown that chronic treatment with allopregnanolone (ALLO) for three months impaired learning function in the Swe/PS1 mouse model. ALLO is a neurosteroid, produced in the CNS and a GABAA receptor agonist. ALLO modulates the general inhibitory system in the CNS by enhancing the effect of GABA. Chronic treatment with other GABAA receptor active compounds, such as benzodiazepines, ethanol and medroxy-progesterone acetate has been associated to cognitive decline and/or increased risk for dementia. In this study, we sufficed with a treatment period of one month for the Swe/PS1 mouse, and included another Alzheimer's disease mouse model; the Swe/Arc model. We found that one month of chronic treatment with elevated ALLO levels within physiological range impaired learning and memory function in the Swe/Arc female and male mice. Male Swe/PS1 mice also showed marginally impaired function, while the female mice did not. Furthermore, the chronic ALLO treatment caused increased levels of soluble Aß in the Swe/PS1 mouse model while the levels were unchanged in the Swe/Arc model. Therefore, both Swe/Arc and Swe/PS1 mice showed signs of accelerated disease progression. Still, further studies are required to determine the mechanisms behind the cognitive impairment and the increased Aß-levels caused by mildly elevated ALLO-levels.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor/genetics , Anesthetics/toxicity , Pregnanolone/toxicity , Presenilin-1/genetics , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Drug Administration Schedule , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Mutation/genetics , Sex Factors , Time Factors
8.
J Alzheimers Dis ; 31(1): 71-84, 2012.
Article in English | MEDLINE | ID: mdl-22495347

ABSTRACT

The endogenous neurosteroid allopregnanolone alters neuronal excitability via modulation of the GABAA receptor and causes decreased neurotransmission. In Alzheimer's disease (AD), neurotransmission seems to alter the levels of toxic intracellular amyloid-ß (Aß) oligomers, which are implicated in AD pathogenesis and cause cognitive decline. Inhibition of synaptic activity has been shown to increase levels of intracellular Aß. Allopregnanolone at endogenous stress levels inhibits synaptic activity and could have similar effects. By using a transgenic AßPP(Swe)PSEN1(ΔE9) mouse model for AD, we observed that chronic allopregnanolone treatment for three months with stress levels of allopregnanolone impaired learning in the Morris water maze. The learning impairment was seen one month after the end of treatment. Chronic allopregnanolone treatment also led to increased levels of soluble Aß in the brain, which could be a sign of advanced pathogenesis. Since the learning and memory of wild-type mice was not affected by the treatment, we propose that chronic allopregnanolone treatment accelerates the pathogenesis of AD. However, further studies are required in order to determine the underlying mechanism.


Subject(s)
Alzheimer Disease/drug therapy , Antipsychotic Agents/therapeutic use , Pregnanolone/therapeutic use , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Antipsychotic Agents/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/pathology , Humans , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Pregnanolone/metabolism , Presenilin-1/genetics , Statistics, Nonparametric , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...