Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Radiat Plasma Med Sci ; 6(4): 393-403, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35372739

ABSTRACT

The best crystal identification (CI) algorithms proposed so far for phoswich detectors are based on adaptive filtering and pulse shape discrimination (PSD). However, these techniques require free running analog to digital converters, which is no longer possible with the ever increasing pixelization of new detectors. We propose to explore the dual-threshold time-over-threshold (ToT) technique, used to measure events energy and time of occurence, as a more robust solution for crystal identification with broad energy windows in phoswich detectors. In this study, phoswich assemblies made of various combinations of LGSO and LYSO scintillators with decay times in the range 30 to 65 ns were investigated for the LabPET II detection front-end. The electronic readout is based on a 4 × 8 APD array where pixels are individually coupled to charge sensitive preamplifiers followed by first order CR-RC shapers with 75 ns peaking time. Crystal identification data were sorted out based on the measurements of likeliness between acquired signals and a time domain model of the analog front-end. Results demonstrate that crystal identification can be successfully performed using a dual-threshold ToT scheme with a discrimination accuracy of 99.1% for LGSO (30 ns)/LGSO (45 ns), 98.1% for LGSO (65 ns)/LYSO (40 ns) and 92.1% for LYSO (32 ns)/LYSO (47 ns), for an energy window of [350-650] keV. Moreover, the method shows a discrimination accuracy >97% for the two first pairs and ~90% for the last one when using a wide energy window of [250-650] keV.

SELECTION OF CITATIONS
SEARCH DETAIL
...