Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811816

ABSTRACT

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Subject(s)
Blood Glucose , Immunity, Innate , Interferon-gamma , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Blood Glucose/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Mice, Inbred C57BL , Signal Transduction/immunology , Insulin/metabolism , Insulin/immunology , Mice, Knockout , Hyperglycemia/immunology , Interferon Regulatory Factor-3/metabolism , NF-kappa B/metabolism , Humans , Liver/immunology , Liver/virology , Liver/metabolism , Male
2.
Sci Immunol ; 8(87): eadd1599, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37774007

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a spectrum of clinical manifestations ranging from benign steatosis to cirrhosis. A key event in the pathophysiology of MAFLD is the development of nonalcoholic steatohepatitis (NASH), which can potentially lead to fibrosis and hepatocellular carcinoma, but the triggers of MAFLD-associated inflammation are not well understood. We have observed that lipid accumulation in hepatocytes induces expression of ligands specific to the activating immune receptor NKG2D. Tissue-resident innate-like T cells, most notably γδ T cells, are activated through NKG2D and secrete IL-17A. IL-17A licenses hepatocytes to produce chemokines that recruit proinflammatory cells into the liver, which causes NASH and fibrosis. NKG2D-deficient mice did not develop fibrosis in dietary models of NASH and had a decreased incidence of hepatic tumors. The frequency of IL-17A+ γδ T cells in the blood of patients with MAFLD correlated directly with liver pathology. Our findings identify a key molecular mechanism through which stressed hepatocytes trigger inflammation in the context of MAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammation/pathology , Interleukin-17/metabolism , Liver Cirrhosis/metabolism , NK Cell Lectin-Like Receptor Subfamily K , T-Lymphocytes/metabolism
3.
Metabolites ; 13(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36837771

ABSTRACT

In their aspiration to become healthy, people are known to follow extreme diets. However, the acute impact on organs regulating systemic metabolism is not well characterized. Here, we investigated the acute impact of six extreme diets on the liver in mice. Most diets did not lead to clear pathology after short-term feeding. However, two weeks of feeding with a high protein diet (HPD) resulted in an acute increase of liver enzymes in the blood, indicative of liver damage. Histology revealed the formation of necrotic lesions in this organ which persisted for several weeks. Flow cytometric analysis of hepatic immune cell populations showed that HPD feeding induced activation of macrophages and neutrophils. Neutralization of the pro-inflammatory cytokine IL-1ß or depletion of macrophages with clodronate-loaded liposomes or with genetic models did not ameliorate liver necrosis. In contrast, the depletion of neutrophils prevented HPD-induced hepatic inflammation. After prolonged feeding, HPD-feeding was associated with a strong increase of the cytokines IL-10 and IL-27, suggesting that anti-inflammatory mediators are activated to prevent nutrient-overload-induced damage to the liver. In summary, whereas our data indicates that most extreme diets do not have a major impact on the liver within two weeks, diets with a very high protein content may lead to severe, acute hepatic damage and should therefore be avoided.

SELECTION OF CITATIONS
SEARCH DETAIL
...