Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 30(10): 3353-3367.e7, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32160542

ABSTRACT

G3BP RNA-binding proteins are important components of stress granules (SGs). Here, we analyze the role of the Drosophila G3BP Rasputin (RIN) in unstressed cells, where RIN is not SG associated. Immunoprecipitation followed by microarray analysis identifies over 550 mRNAs that copurify with RIN. The mRNAs found in SGs are long and translationally silent. In contrast, we find that RIN-bound mRNAs, which encode core components of the transcription, splicing, and translation machinery, are short, stable, and highly translated. We show that RIN is associated with polysomes and provide evidence for a direct role for RIN and its human homologs in stabilizing and upregulating the translation of their target mRNAs. We propose that when cells are stressed, the resulting incorporation of RIN/G3BPs into SGs sequesters them away from their short target mRNAs. This would downregulate the expression of these transcripts, even though they are not incorporated into stress granules.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Protein Biosynthesis , RNA Stability/genetics , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Carrier Proteins/genetics , Cytoplasmic Granules/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Gene Ontology , Humans , Mice , Mitochondria/metabolism , Mutation/genetics , NIH 3T3 Cells , Polyribosomes/metabolism , RNA Recognition Motif/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Transcriptome/genetics , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...