Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Biomed J ; : 100749, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797478

ABSTRACT

After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in the intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.

2.
Transplantation ; 107(4): 827-837, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36398330

ABSTRACT

The adaptive immune response leading to the rejection of allogeneic transplants is initiated and orchestrated by recipient T cells recognizing donor antigens. T-cell allorecognition is mediated via 3 distinct mechanisms: the direct pathway in which T cells recognize allogeneic major histocompatibility complex (MHC) molecules on donor cells, the indirect pathway through which T cells interact with donor peptides bound with self-MHC molecules on recipient antigen-presenting cells, and the recently described semidirect pathway whereby T cells recognize donor MHC proteins on recipient antigen-presenting cells. In this article, we present a description of each of these allorecognition pathways and discuss their role in acute and chronic rejection of allogeneic transplants.


Subject(s)
Graft Rejection , T-Lymphocytes , Isoantigens , Transplantation, Homologous , Histocompatibility Antigens , Proteins , Allografts
3.
Front Immunol ; 13: 829406, 2022.
Article in English | MEDLINE | ID: mdl-35619720

ABSTRACT

Background: Vascularized composite allografts (VCAs) allow reconstruction of devastating injuries and amputations, yet require lifelong immunosuppression that is associated with significant morbidity. Induction of immune tolerance of VCAs would permit widespread use of these procedures. VCAs are acquired from deceased donors most likely to be fully-MHC-mismatched (in contrast to living-related renal transplant donor-recipient pairs matched at one MHC haplotype). After achieving VCA tolerance in a swine model equivalent to clinical living-related renal transplants (single-haplotype MHC mismatches: e.g., "mother-daughter"/haploidentical), we tested our protocol in MHC class I, class II, and fully-MHC-mismatched pairs. Although class II mismatched swine demonstrated similar results as the haploidentical scenario (stable mixed chimerism and tolerance), our protocol failed to prevent rejection of class I and full mismatch VCAs. Here, we describe a new adapted conditioning protocol that successfully achieved tolerance across MHC class-I-mismatch barriers in swine. Methods: Swine were treated with non-myeloablative total body and thymic irradiation two days prior to infusion of bone marrow cells from an MHC class I-mismatched donor. They also received a short-term treatment with CTLA4-Ig (Belatacept®) and anti-IL6R mAb (Tociluzimab®) and were transplanted with an osteomyocutaneous VCA from the same donor. Results: Stable mixed chimerism and tolerance of MHC class-I-mismatched VCAs was achieved in 3 recipients. Allograft tolerance was associated with a sustained lack of anti-donor T cell response and a concomitant expansion of double negative CD4-CD8- T cells producing IL-10. Conclusions: This study demonstrates the first successful mixed chimerism-induced VCA tolerance in a large animal model across a MHC class-I-mismatch. Future studies aimed at fully-mismatched donor-recipient pairs are under investigation with this protocol.


Subject(s)
Composite Tissue Allografts , Kidney Transplantation , Animals , Chimerism , Composite Tissue Allografts/transplantation , Immune Tolerance/physiology , Swine , Transplantation Tolerance
4.
iScience ; 25(2): 103806, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198871

ABSTRACT

Dynamic profiling of changes in gene expression in response to stressors in specific microenvironments without requiring cellular destruction remains challenging. Current methodologies that seek to interrogate gene expression at a molecular level require sampling of cellular transcriptome and therefore lysis of the cell, preventing serial analysis of cellular transcriptome. To address this area of unmet need, we have recently developed a technology allowing transcriptomic analysis over time without cellular destruction. Our method, TRACE-seq (TRanscriptomic Analysis Captured in Extracellular vesicles using sequencing), is characterized by a cell-type specific transgene expression. It provides data on the transcriptome inside extracellular vesicles that provides an accurate representation of stress-responsive cellular transcriptomic changes. Thus, the transcriptome of cells expressing TRACE can be followed over time without destroying the source cell, which is a powerful tool for many fields of fundamental and translational biology research.

5.
Transplant Direct ; 7(6): e705, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34056080

ABSTRACT

BACKGROUND: In kidney transplantation, long-term allograft acceptance in cynomolgus macaques was achieved using a mixed-chimerism protocol based on the clinically available reagents, rabbit anti-thymocyte globulin (ATG), and belatacept. Here, we have tested the same protocol in cynomolgus macaques transplanted with fully allogeneic lung grafts. METHODS: Five cynomolgus macaques underwent left orthotopic lung transplantation. Initial immunosuppression included equine ATG and anti-IL6RmAb induction, followed by triple-drug immunosuppression for 4 mo. Post-transplant, a nonmyeloablative conditioning regimen was applied, including total body and thymic irradiation. Rabbit ATG, belatacept, anti-IL6RmAb, and donor bone marrow transplantation (DBMT) were given, in addition to a 28-d course of cyclosporine. All immunosuppressant drugs were stopped on day 29 after DBMT. RESULTS: One monkey rejected its lung before DBMT due to AMR, after developing donor-specific antibodies. Two monkeys developed fatal post-transplant lymphoproliferative disorder, and both monkeys had signs of cellular rejection in their allografts upon autopsy. The remaining 2 monkeys showed severe cellular rejection on days 42 and 70 post-DBMT. Cytokine analysis suggested higher levels of pro-inflammatory markers in the lung transplant cohort, as compared to kidney recipients. CONCLUSION: Although the clinically applicable protocol showed success in kidney transplantation, the study did not show long-term survival in a lung transplant model, highlighting the organ-specific differences in tolerance induction.

6.
Am J Transplant ; 21(7): 2583-2589, 2021 07.
Article in English | MEDLINE | ID: mdl-33794063

ABSTRACT

Extracellular vesicles, including exosomes, are regularly released by allogeneic cells after transplantation. Recipient antigen-presenting cells (APCs) capture these vesicles and subsequently display donor MHC molecules on their surface. Recent evidence suggests that activation of alloreactive T cells by the so-called cross-dressed APCs plays an important role in initiating the alloresponse associated with allograft rejection. On the other hand, whether allogeneic exosomes can bind to T cells on their own and activate them remains unclear. In this study, we showed that allogeneic exosomes can bind to T cells but do not stimulate them in vitro unless they are cultured with APCs. On the other hand, allogeneic exosomes activate T cells in vivo and sensitize mice to alloantigens but only when delivered in an inflammatory environment.


Subject(s)
Exosomes , Hematopoietic Stem Cell Transplantation , Animals , Antigen-Presenting Cells , Graft Rejection/prevention & control , Isoantigens , Mice , T-Lymphocytes
7.
Am J Transplant ; 20(9): 2551-2558, 2020 09.
Article in English | MEDLINE | ID: mdl-32185859

ABSTRACT

Alloreactive memory T cells play a key role in transplantation by accelerating allograft rejection and preventing tolerance induction. Some studies using µMT mice, which are constitutionally devoid of B cells, showed that B cells were required for the generation of memory T cells after allotransplantation. However, whether B cell depletion in normal adult mice has the same effect on memory responses by CD4+ and CD8+ T cells activated after transplantation has not been thoroughly investigated. In this study, we tested the effect of anti-CD20 antibody-mediated B cell depletion on CD4+ and CD8+ memory T cell alloresponses after skin transplantation in wild-type mice. We found that B cell depletion prevented the development of memory alloresponses by CD4+ T cells but enhanced that of CD8+ memory T cells. Next, we tested the influence of B cell depletion on hematopoietic chimerism. In OT-II CD4+ anti-OVA TCR transgenic mice sensitized to ovalbumin antigen, B cell depletion also impaired allospecific memory T cell responses and thereby enhanced donor hematopoietic chimerism and T cell deletion after bone marrow transplantation. This study underscores the complexity of the relationships between B and T cells in the generation and reactivation of different memory T cell subsets after transplantation.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Animals , B-Lymphocytes , CD4-Positive T-Lymphocytes , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Skin Transplantation
8.
Cell Immunol ; 349: 104063, 2020 03.
Article in English | MEDLINE | ID: mdl-32087929

ABSTRACT

Extracellular vesicles (EVs), including exosomes, ectosomes and apoptotic vesicles, play an essential role in communication between cells of the innate and adaptive immune systems. Recent studies showed that EVs released after transplantation of allogeneic tissues and organs are involved in the immune recognition and response leading to rejection or tolerance in mice. After skin, pancreatic islet, and solid organ transplantation, donor-derived EVs were shown to initiate direct inflammatory alloresponses by T cells leading to acute rejection. This occurred through presentation of intact allogeneic MHC molecules on recipient antigen presenting cells (MHC cross-dressing) and subsequent activation of T cells via semi-direct allorecognition. On the other hand, some studies have documented the role of EVs in maternal tolerance of fetal alloantigens during pregnancy and immune privilege associated with spontaneous tolerance of liver allografts in laboratory rodents. The precise nature of the EVs, which are involved in rejection or tolerance, and the cells which produce them, is still unclear. Nevertheless, several reports showed that EVs released in the blood and urine by allografts can be used as biomarkers of rejection. This article reviews current knowledge on the contribution of EVs in allorecognition by T cells and discusses some mechanisms underlying their influence on T cell alloimmunity in allograft rejection or tolerance.


Subject(s)
Allografts/immunology , Extracellular Vesicles/immunology , Graft Rejection/immunology , Transplantation Tolerance/immunology , Adaptive Immunity , Animals , Antigen Presentation , Antigen-Presenting Cells/immunology , Biomarkers , Chimerism , Extracellular Vesicles/metabolism , Female , Heterografts/immunology , Humans , Immunity, Innate , Isoantigens/immunology , Male , Maternal-Fetal Exchange/immunology , Mice , Pregnancy
9.
Curr Opin Organ Transplant ; 24(1): 49-57, 2019 02.
Article in English | MEDLINE | ID: mdl-30516578

ABSTRACT

PURPOSE OF REVIEW: There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS: The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY: The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.


Subject(s)
Allografts/transplantation , Graft Rejection/immunology , Transplantation, Homologous/methods , Humans
10.
Am J Transplant ; 18(8): 1843-1856, 2018 08.
Article in English | MEDLINE | ID: mdl-29939471

ABSTRACT

Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.


Subject(s)
Graft Survival/immunology , Isoantigens/immunology , T-Lymphocytes/immunology , Transplantation Tolerance/immunology , Animals
12.
Curr Opin Organ Transplant ; 23(1): 22-27, 2018 02.
Article in English | MEDLINE | ID: mdl-29189413

ABSTRACT

PURPOSE OF REVIEW: This article reviews recent literature on the nature of extracellular vesicles released by allogeneic transplants and examine their role in T-cell alloimmunity involved in rejection and tolerance of these grafts. RECENT FINDINGS: Donor cells release extracellular vesicles, including exosomes, after transplantation of allogeneic organs and tissues. Consequently, recipient APCs take up these exosomes and present donor MHC antigens on their surface (allo-MHC cross-dressing) thus, activating some alloreactive T cells via a mechanism called semi-direct pathway of allorecognition. In addition, one study shows that exosomes carrying noninherited maternal antigens are associated with maternal microchimerism and tolerance in offspring. Finally, a few studies describe potential utilization of exosomes as modulators of alloimmunity and biomarkers of rejection in allotransplantation. SUMMARY: Extracellular vesicles, including exosomes, released by allografts contribute to recognition of donor antigens by T cells after allotransplantation. This occurs through cross-dressing of recipient APCs with donor MHC antigens and subsequent activation of T cells, a process called semi-direct alloreactivity. The relevance of this phenomenon in rejection and tolerance of allografts and the potential utilization of exosomes as biomarkers in transplantation are discussed.


Subject(s)
Allografts/immunology , Antigen Presentation/immunology , Exosomes/immunology , Graft Rejection/immunology , Histocompatibility Antigens/immunology , Isoantigens/immunology , Tissue Donors , Animals , Humans , Transplantation, Homologous
14.
Front Immunol ; 8: 170, 2017.
Article in English | MEDLINE | ID: mdl-28293238

ABSTRACT

Memory T cells are characterized by their low activation threshold, robust effector functions, and resistance to conventional immunosuppression and costimulation blockade. Unlike their naïve counterparts, memory T cells reside in and recirculate through peripheral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different categories based on their origins, phenotypes, and functions. Recipients whose immune systems have been directly exposed to allogeneic major histocompatibility complex (MHC) molecules display high affinity alloreactive memory T cells. In the absence of any prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells are regularly generated through microbial infections (heterologous immunity). Regardless of their origin, alloreactive memory T cells represent an essential element of the allograft rejection process and a major barrier to tolerance induction in clinical transplantation. This article describes the different subsets of alloreactive memory T cells involved in transplant rejection and examine their generation, functional properties, and mechanisms of action. In addition, we discuss strategies developed to target deleterious allospecific memory T cells in experimental animal models and clinical settings.

15.
Front Immunol ; 8: 80, 2017.
Article in English | MEDLINE | ID: mdl-28210263

ABSTRACT

B lymphocytes contribute to acute and chronic allograft rejection through their production of donor-specific antibodies (DSAs). In addition, B cells present allopeptides bound to self-MHC class II molecules and provide costimulation signals to T cells, which are essential to their activation and differentiation into memory T cells. On the other hand, both in laboratory rodents and patients, the concept of effector T cell regulation by B cells is gaining traction in the field of transplantation. Specifically, clinical trials using anti-CD20 monoclonal antibodies to deplete B cells and reverse DSA had a deleterious effect on rates of acute cellular rejection; a peculiar finding that calls into question a central paradigm in transplantation. Additional work in humans has characterized IL-10-producing B cells (IgM memory and transitional B cells), which suppress the proliferation and inflammatory cytokine productions of effector T cells in vitro. Understanding the mechanisms of regulating the alloresponse is critical if we are to achieve operational tolerance across transplantation. This review will focus on recent evidence in murine and human transplantation with respect to non-traditional roles for B cells in determining clinical outcomes.

16.
Front Immunol ; 7: 582, 2016.
Article in English | MEDLINE | ID: mdl-28018349

ABSTRACT

Recognition of donor antigens by recipient T cells in secondary lymphoid organs initiates the adaptive inflammatory immune response leading to the rejection of allogeneic transplants. Allospecific T cells become activated through interaction of their T cell receptors with intact allogeneic major histocompatibility complex (MHC) molecules on donor cells (direct pathway) and/or donor peptides presented by self-MHC molecules on recipient antigen-presenting cells (APCs) (indirect pathway). In addition, recent studies show that alloreactive T cells can also be stimulated through recognition of allogeneic MHC molecules displayed on recipient APCs (MHC cross-dressing) after their transfer via cell-cell contact or through extracellular vesicles (semi-direct pathway). The specific allorecognition pathway used by T cells is dictated by intrinsic and extrinsic factors to the allograft and can influence the nature and magnitude of the alloresponse and rejection process. Consequently, various organs and tissues such as skin, cornea, and solid organ transplants are recognized differently by pro-inflammatory T cells through these distinct pathways, which may explain why these grafts are rejected in a different fashion. On the other hand, the mechanisms by which anti-inflammatory regulatory T cells (Tregs) recognize alloantigen and promote transplantation tolerance are still unclear. It is likely that thymic Tregs are activated through indirect allorecognition, while peripheral Tregs recognize alloantigens in a direct fashion. As we gain insights into the mechanisms underlying allorecognition by pro-inflammatory and Treg cells, novel strategies are being designed to prevent allograft rejection in the absence of ongoing immunosuppressive drug treatment in patients.

17.
Sci Immunol ; 1(1)2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27942611

ABSTRACT

Transplantation of allogeneic organs and tissues represents a lifesaving procedure for a variety of patients affected with end-stage diseases. Although current immunosuppressive therapy prevents early acute rejection, it is associated with nephrotoxicity and increased risks for infection and neoplasia. This stresses the need for selective immune-based therapies relying on manipulation of lymphocyte recognition of donor antigens. The passenger leukocyte theory states that allograft rejection is initiated by recipient T cells recognizing donor major histocompatibility complex (MHC) molecules displayed on graft leukocytes migrating to the host's lymphoid organs. We revisited this concept in mice transplanted with allogeneic skin, heart, or islet grafts using imaging flow cytometry. We observed no donor cells in the lymph nodes and spleen of skin-grafted mice, but we found high numbers of recipient cells displaying allogeneic MHC molecules (cross-dressed) acquired from donor microvesicles (exosomes). After heart or islet transplantation, we observed few donor leukocytes (100 per million) but large numbers of recipient cells cross-dressed with donor MHC (>90,000 per million). Last, we showed that purified allogeneic exosomes induced proinflammatory alloimmune responses by T cells in vitro and in vivo. Collectively, these results suggest that recipient antigen-presenting cells cross-dressed with donor MHC rather than passenger leukocytes trigger T cell responses after allotransplantation.

18.
JCI Insight ; 1(10)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27446989

ABSTRACT

Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism.

19.
Curr Opin Organ Transplant ; 20(1): 49-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25563992

ABSTRACT

PURPOSE OF REVIEW: The present review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. RECENT FINDINGS: Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. SUMMARY: Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, and to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/physiology , Kidney Transplantation , Transplantation Tolerance/immunology , Animals , Humans , Mice , Transplantation Conditioning , Transplantation, Homologous
20.
J Immunol ; 194(3): 1364-71, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25535285

ABSTRACT

In this study, we showed that aly/aly mice, which are devoid of lymph nodes and Peyer's patches, acutely rejected fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts also were rejected acutely by splenectomized aly/aly (aly/aly-spl(-)) mice devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8(+) T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected by aly/aly-spl(-) mice. Actually, aly/aly-spl(-) mice that spontaneously accepted a heart allotransplant and displayed donor-specific tolerance also accepted skin grafts from the same, but not a third-party, donor via a mechanism involving CD4(+) regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs.


Subject(s)
Allografts/immunology , Graft Rejection/immunology , Immune Tolerance , Lymphoid Tissue/immunology , Animals , Bone Marrow Transplantation , Graft Rejection/mortality , Heart Transplantation , Immunologic Memory , Lymphoid Tissue/metabolism , Mice , Mice, Knockout , Skin Transplantation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...