Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37447939

ABSTRACT

A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.


Subject(s)
COVID-19 , Masks , Humans , Artificial Intelligence , Pandemics , Personal Protective Equipment
2.
Diagnostics (Basel) ; 13(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36980412

ABSTRACT

Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification of melanoma is still a challenging process for color images, despite the fact that numerous approaches have been proposed in the research that has been done. In this research, we present a comprehensive system for the efficient and precise classification of skin lesions. The framework includes preprocessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis, Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM) classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration (ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%, and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior for categorizing skin cancer types using the proposed innovative SDP.

3.
Diagnostics (Basel) ; 12(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36428875

ABSTRACT

Blood cells carry important information that can be used to represent a person's current state of health. The identification of different types of blood cells in a timely and precise manner is essential to cutting the infection risks that people face on a daily basis. The BCNet is an artificial intelligence (AI)-based deep learning (DL) framework that was proposed based on the capability of transfer learning with a convolutional neural network to rapidly and automatically identify the blood cells in an eight-class identification scenario: Basophil, Eosinophil, Erythroblast, Immature Granulocytes, Lymphocyte, Monocyte, Neutrophil, and Platelet. For the purpose of establishing the dependability and viability of BCNet, exhaustive experiments consisting of five-fold cross-validation tests are carried out. Using the transfer learning strategy, we conducted in-depth comprehensive experiments on the proposed BCNet's architecture and test it with three optimizers of ADAM, RMSprop (RMSP), and stochastic gradient descent (SGD). Meanwhile, the performance of the proposed BCNet is directly compared using the same dataset with the state-of-the-art deep learning models of DensNet, ResNet, Inception, and MobileNet. When employing the different optimizers, the BCNet framework demonstrated better classification performance with ADAM and RMSP optimizers. The best evaluation performance was achieved using the RMSP optimizer in terms of 98.51% accuracy and 96.24% F1-score. Compared with the baseline model, the BCNet clearly improved the prediction accuracy performance 1.94%, 3.33%, and 1.65% using the optimizers of ADAM, RMSP, and SGD, respectively. The proposed BCNet model outperformed the AI models of DenseNet, ResNet, Inception, and MobileNet in terms of the testing time of a single blood cell image by 10.98, 4.26, 2.03, and 0.21 msec. In comparison to the most recent deep learning models, the BCNet model could be able to generate encouraging outcomes. It is essential for the advancement of healthcare facilities to have such a recognition rate improving the detection performance of the blood cells.

4.
Comput Intell Neurosci ; 2022: 7937667, 2022.
Article in English | MEDLINE | ID: mdl-35378816

ABSTRACT

Social media networking is a prominent topic in real life, particularly at the current moment. The impact of comments has been investigated in several studies. Twitter, Facebook, and Instagram are just a few of the social media networks that are used to broadcast different news worldwide. In this paper, a comprehensive AI-based study is presented to automatically detect the Arabic text misogyny and sarcasm in binary and multiclass scenarios. The key of the proposed AI approach is to distinguish various topics of misogyny and sarcasm from Arabic tweets in social media networks. A comprehensive study is achieved for detecting both misogyny and sarcasm via adopting seven state-of-the-art NLP classifiers: ARABERT, PAC, LRC, RFC, LSVC, DTC, and KNNC. To fine tune, validate, and evaluate all of these techniques, two Arabic tweets datasets (i.e., misogyny and Abu Farah datasets) are used. For the experimental study, two scenarios are proposed for each case study (misogyny or sarcasm): binary and multiclass problems. For misogyny detection, the best accuracy is achieved using the AraBERT classifier with 91.0% for binary classification scenario and 89.0% for the multiclass scenario. For sarcasm detection, the best accuracy is achieved using the AraBERT as well with 88% for binary classification scenario and 77.0% for the multiclass scenario. The proposed method appears to be effective in detecting misogyny and sarcasm in social media platforms with suggesting AraBERT as a superior state-of-the-art deep learning classifier.


Subject(s)
Artificial Intelligence , Social Media , Humans , Social Networking
5.
Comput Math Methods Med ; 2022: 4593330, 2022.
Article in English | MEDLINE | ID: mdl-35069782

ABSTRACT

Drosophila melanogaster is an important genetic model organism used extensively in medical and biological studies. About 61% of known human genes have a recognizable match with the genetic code of Drosophila flies, and 50% of fly protein sequences have mammalian analogues. Recently, several investigations have been conducted in Drosophila to study the functions of specific genes exist in the central nervous system, heart, liver, and kidney. The outcomes of the research in Drosophila are also used as a unique tool to study human-related diseases. This article presents a novel automated system to classify the gender of Drosophila flies obtained through microscopic images (ventral view). The proposed system takes an image as input and converts it into grayscale illustration to extract the texture features from the image. Then, machine learning (ML) classifiers such as support vector machines (SVM), Naive Bayes (NB), and K-nearest neighbour (KNN) are used to classify the Drosophila as male or female. The proposed model is evaluated using the real microscopic image dataset, and the results show that the accuracy of the KNN is 90%, which is higher than the accuracy of the SVM classifier.


Subject(s)
Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/classification , Machine Learning , Sex Determination Analysis/methods , Animals , Bayes Theorem , Computational Biology , Female , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/statistics & numerical data , Male , Microscopy , Sex Determination Analysis/statistics & numerical data , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...