Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bonekey Rep ; 2: 299, 2013.
Article in English | MEDLINE | ID: mdl-23951542

ABSTRACT

Negative pressure therapy (NPT) is the controlled application of subatmospheric pressure to wounds. It has been shown to stimulate healing across a broad spectrum of soft-tissue wounds, at least in part from the application of mechanical stress on cells and tissues in the wound environment. This study tests the hypothesis that application of NPT to cranial critical-size defects (CSD) in skeletally mature rabbits leads to osseous healing. NPT was delivered 1, 4, 6 or 10 days over CSD-containing calcium phosphate scaffolds placed in contact with intact dura. At 12 weeks after defect creation, NPT groups exhibited significantly greater defect bridging and bone within the scaffolds (P<0.01). Increasing duration of NPT did not result in a greater amount of bone within the scaffolds, but did increase the amount of bone distributed in the upper half of the scaffolds. Appearance of tissue within defects immediately following the removal of NPT at day 6 suggests alternating regions of dural compression and distention indicative of cell stretching. Dura and adjacent tissue were composed of multiple cell layers that extended up into the scaffolds, lining struts and populating pore spaces. An extracellular matrix densely populated with cells and capillaries, as well as larger vessels, infiltrated pores of NPT-treated scaffolds, while scattered spindle-shaped cells and sparse stroma are present within pores of control scaffolds. This rabbit model data suggest that NPT activates within mature dura a natural healing cascade that results in osseous tissue formation without the addition of exogenous factors or progenitor cells.

2.
Orthopedics ; 26(5 Suppl): s591-6, 2003 May.
Article in English | MEDLINE | ID: mdl-12755232

ABSTRACT

Three preclinical models were used to evaluate GraftJacket Acellular Periosteum Replacement Scaffold (Wright Medical Technology, Inc, Arlington, Tenn). The studies assessed the ability of the acellular dermal matrix to repopulate with cells, revascularize, provide a protected environment for bone defect restoration, and minimize fibrous tissue infiltration. An athymic nude rat muscle implantation study demonstrated a steady increase in cellular repopulation through days 2-21. The formation of blood vessels occurred between days 7-14 in this study. Results from a porcine femoral drill hole study indicated that the scaffold material was intact and adherent to surrounding bone and allowed cellular repopulation and vascular infiltration at a 5-week time period. A preliminary porcine segmental bone defect model at a 6-week time period demonstrated the ability of the scaffold material to protect the bone defect site as revealed by new bone formation within the margins of the defect and adjacent to the scaffold. The segmental model also indicated minimal to no soft tissue invasion into the defect site. The combined studies provided preliminary evidence that the dermal membrane material may be used as a scaffold for periosteum regeneration by allowing for cellular repopulation, revascularization, and bone defect restoration.


Subject(s)
Bone Matrix/transplantation , Femur/physiology , Periosteum/physiology , Animals , Biocompatible Materials , Femur/pathology , Male , Models, Animal , Rats , Regeneration , Swine , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...