Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853829

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bacterial pathogen, continues to pose a serious threat to the current public health system in our society. The high level of resistance to ß-lactam antibiotics in MRSA is attributed to the expression of penicillin-binding protein 2a (PBP2a), which catalyzes cell wall cross-linking. According to numerous research reports, the activity of the PBP2a protein is known to be regulated by an allosteric site distinct from the active site where cell wall cross-linking occurs. Here, we conducted a screening of 113 compounds containing a 1,3,4-oxadiazole core to design new covalent inhibitors targeting the allosteric site of PBP2a and establish their structural-activity relationship. The stereochemically selective synthesis of sulfonyl oxadiazole compounds identified in the initial screening resulted in a maximum eightfold enhancement in cell inhibition activity. The sulfonyl oxadiazole-based compounds formulated as PEG-based ointments, with low toxicity test results on human cells (CC 50 : >78µM), demonstrated potent antimicrobial effects not only in a mouse skin wound infection model but also against oxacillin-resistant clinical isolate MRSA (IC 50 ≈ 1µM), as evidenced by the results. Furthermore, additional studies utilizing LC-MS/MS and in-silico approaches clearly support the allosteric site covalent binding mechanism through the nucleophilic aromatic substitution (S N Ar) reaction, as well as its association with the closure of the major active site of PBP2a.

2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853951

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent bacterial threat to public health, with only a few treatment options and a >50% fatality rate. Although several resistance mechanisms are understood, the appearance of these mutations is generally considered stochastic. Recent reports have, however, begun to challenge this assumption. Here, we demonstrate that independent samples of Ab, exposed to different carbapenems with escalating concentrations, show concentration- and carbapenem-dependent trends in ß-lactamase-isoform expression. This result, based on the isoforms identified through label-free-quantification LC-MS/MS measurements of cell-free, gel-separated ß-lactamases, suggests that the appearance of antibiotic resistance may be somewhat non-stochastic. Specifically, several minor AmpC/ADC ß-lactamase-isoforms were found to exhibit both dose- and carbapenem-dependent expression, suggesting the possibility of non-stochastic mutations. Additionally, these also have high sequence similarity to major expressed isoforms, indicating a potential path over which resistance occurred in independent samples. Antibiotic resistance maybe somewhat antibiotic-directed by a hitherto unknown mechanism and further investigation may lead to new strategies for mitigating antibiotic resistance. Teaser: The emergence of antibiotic-resistant ß-lactamase proteins from mutations may exhibit patterns based on specific antibiotics.

3.
Microorganisms ; 11(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38004664

ABSTRACT

Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of ß-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a ß-lactamase inhibitor is administered together with a ß-lactam antibiotic-has proven effective against serine-ß-lactamases, there are no currently approved metallo-ß-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-ß-lactamase inhibitors. Through a combined computational and in vitro approach, taxifolin was found to inhibit VIM-2 expressing P. aeruginosa cell proliferation at <4 µg/mL as part of a triple combination with amoxicillin and clavulanate. Furthermore, we tested this combination in mice with abrasive skin infections. Together, these results demonstrate that flavonol compounds, such as taxifolin, may be developed into effective metallo-ß-lactamase inhibitors.

4.
J Biol Chem ; 299(9): 105135, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549809

ABSTRACT

The bacterial metallo-ß-lactamases (MBLs) catalyze the inactivation of ß-lactam antibiotics. Identifying novel pharmacophores remains crucial for the clinical development of additional MBL inhibitors. Previously, 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid, hereafter referred to as 1,2-HPT-6-COOH, was reported as a low cytotoxic nanomolar ß-lactamase inhibitor of Verona-integron-encoded metallo-ß-lactamase 2, capable of rescuing ß-lactam antibiotic activity. In this study, we explore its exact mechanism of inhibition and the extent of its activity through structural characterization of its binding to New Delhi metallo-ß-lactamase 4 (NDM-4) and its inhibitory activity against both NDM-1 and NDM-4. Of all the structure-validated MBL inhibitors available, 1,2-HPT-6-COOH is the first discovered compound capable of forming an octahedral coordination sphere with Zn2 of the binuclear metal center. This unexpected mechanism of action provides important insight for the further optimization of 1,2-HPT-6-COOH and the identification of additional pharmacophores for MBL inhibition.

5.
Sci Rep ; 13(1): 9177, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280269

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with > 50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no focused analyses of dynamic changes to ß-lactamase expression that may occur due to drug exposure. Here, we present our initial proteomic study of variation in ß-lactamase expression that occurs in CRAb with different ß-lactam antibiotics. Briefly, drug resistance to Ab (ATCC 19606) was induced by the administration of various classes of ß-lactam antibiotics, and the cell-free supernatant was isolated, concentrated, separated by SDS-PAGE, digested with trypsin, and identified by label-free LC-MS-based quantitative proteomics. Thirteen proteins were identified and evaluated using a 1789 sequence database of Ab ß-lactamases from UniProt, the majority of which were Class C ß-lactamases (≥ 80%). Importantly, different antibiotics, even those of the same class (e.g. penicillin and amoxicillin), induced non-equivalent responses comprising various isoforms of Class C and D serine-ß-lactamases, resulting in unique resistomes. These results open the door to a new approach of analyzing and studying the problem of multi-drug resistance in bacteria that rely strongly on ß-lactamase expression.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolism , Proteomics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Monobactams , Microbial Sensitivity Tests , beta-Lactam Resistance
6.
Antibiotics (Basel) ; 12(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37237789

ABSTRACT

8-Hydroxyquinoline (8-hq) exhibits potent antimicrobial activity against Staphylococcus aureus (SA) bacteria with MIC = 16.0-32.0 µM owing to its ability to chelate metal ions such as Mn2+, Zn2+, and Cu2+ to disrupt metal homeostasis in bacterial cells. We demonstrate that Fe(8-hq)3, the 1:3 complex formed between Fe(III) and 8-hq, can readily transport Fe(III) across the bacterial cell membrane and deliver iron into the bacterial cell, thus, harnessing a dual antimicrobial mechanism of action that combines the bactericidal activity of iron with the metal chelating effect of 8-hq to kill bacteria. As a result, the antimicrobial potency of Fe(8-hq)3 is significantly enhanced in comparison with 8-hq. Resistance development by SA toward Fe(8-hq)3 is considerably delayed as compared with ciprofloxacin and 8-hq. Fe(8-hq)3 can also overcome the 8-hq and mupirocin resistance developed in the SA mutant and MRSA mutant bacteria, respectively. Fe(8-hq)3 can stimulate M1-like macrophage polarization of RAW 264.7 cells to kill the SA internalized in such macrophages. Fe(8-hq)3 exhibits a synergistic effect with both ciprofloxacin and imipenem, showing potential for combination therapies with topical and systemic antibiotics for more serious MRSA infections. The in vivo antimicrobial efficacy of a 2% Fe(8-hq)3 topical ointment is confirmed by the use of a murine model with skin wound infection by bioluminescent SA with a reduction of the bacterial burden by 99 ± 0.5%, indicating that this non-antibiotic iron complex has therapeutic potential for skin and soft tissue infections (SSTIs).

7.
Res Sq ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711967

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an urgent public health threat, according to the CDC. This pathogen has few treatment options and causes severe nosocomial infections with > 50% fatality rate. Although previous studies have examined the proteome of CRAb, there have been no focused analyses of dynamic changes to ß-lactamase expression that may occur due to drug exposure. Here, we present our initial proteomic study of variation in ß-lactamase expression that occurs in CRAb with different ß-lactam antibiotics. Briefly, drug resistance to Ab (ATCC 19606) was induced by the administration of various classes of ß-lactam antibiotics, and the cell-free supernatant was isolated, concentrated, separated by SDS-PAGE, digested with trypsin, and identified by label-free LC-MS-based quantitative proteomics. Peptides were identified and evaluated using a 1789 sequence database of Ab ß-lactamases from UniProt. Importantly, we observed that different antibiotics, even those of the same class ( e.g. penicillin and amoxicillin), induce non-equivalent responses comprising various Class C and D serine-ß-lactamases, resulting in unique resistomes. These results open the door to a new approach of analyzing and studying the problem of multi-drug resistance in bacteria that rely strongly on ß-lactamase expression.

8.
Biomater Sci ; 10(6): 1523-1531, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35171156

ABSTRACT

Antimicrobial resistance is a persistent threat to global public health. In order to combat the spread of pathogenic bacteria, numerous antimicrobial materials have been incorporated into wound dressings and medical devices such as implants and catheters. The most frequently utilized of these materials are Ag-salts and Ag-nanoparticles (AgNPs) due to their low minimum inhibitory concentrations (MICs) against common Gram-negative pathogenic bacteria such as P. aeruginosa. However, such Ag-based materials are limited to treating Gram-negative bacteria and prone to generating Ag-resistant phenotypes after only 7 consecutive exposures to these materials at a sub-inhibitory concentration. Here, we demonstrate α-Bi2O3 NPs as potential replacements for such materials, i.e., α-Bi2O3 NPs that exhibit potent broad-spectrum antibacterial activity (MIC = 0.75 µg mL-1 against P. aeruginosa; MIC = 2.5 µg mL-1 against S. aureus). Furthermore, these NPs are effective against Ag-resistant and carbapenem-resistant bacteria (MICs = 1.0 µg mL-1 and 1.25 µg mL-1, respectively) and also show a synergistic effect with meropenem (mero) in P. aeruginosa bacteria, allowing for the use of meropenem with smaller therapeutic doses (fractional inhibitory concentration = 0.45). Finally, unlike other materials that have been explored as effective antimicrobials, α-Bi2O3 NPs do not contribute to the development of Bi-resistant phenotypes after 30 passages of consecutive exposure to a sub-lethal dose of such NPs. Our results demonstrate that Bi-based materials represent a critical tool against multidrug resistant bacteria and require greater attention within the community. We anticipate this study to inspire broader investigation into the use of other metal oxides as antimicrobial materials, particularly those that limit the development of resistant phenotypes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Ciprofloxacin/pharmacology , Meropenem/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus
9.
J Med Chem ; 64(13): 9381-9388, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34137262

ABSTRACT

Antibiotic resistance (AR) necessitates the discovery of new antimicrobials with alternative mechanisms of action to those employed by conventional antibiotics. One such strategy utilizes Ga3+ to target iron metabolism, a critical process for survival. Still, Ga-based therapies are generally ineffective against Gram-positive bacteria and promote Ga resistance. In response to these drawbacks, we report a lipophilic Ga complex, [Ga2L3(bpy)2] (L = 2,2'-bis(3-hydroxy-1,4-naphthoquinone; bpy = 2,2'-bipyridine)), effective against drug-resistant Pseudomonas aeruginosa (DRPA; minimum inhibitory concentration, MIC = 10 µM = 14.8 µg/mL) and methicillin-resistant Staphylococcus aureus (MRSA, MIC = 100 µM = 148 µg/mL) without iron-limited conditions. Importantly, [Ga2L3(bpy)2] shows noticeably delayed and decreased resistance in both MRSA and DRPA, with only 8× MIC in DRPA and none in MRSA after 30 passages. This is likely due to the dual mode of action afforded by Ga (disruption of iron metabolism) and the ligand (reactive oxygen species production). Overall, [Ga2L3(bpy)2] demonstrates the utility of lipophilic metal complexes with multiple modes of action in combatting AR in Gram-positive and Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Drug Resistance, Bacterial/drug effects , Gallium/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Gallium/chemistry , Molecular Structure , Structure-Activity Relationship
10.
Chem Mater ; 33(7): 2408-2419, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33867666

ABSTRACT

Mixed-valent metal-halides containing ns2 lone pairs may exhibit intense visible absorption, while zero-dimensional (0D) ns2-based metal-chlorides are generally colorless but have demonstrated promising optoelectronic properties suitable for thermometry and radiation detection. Here, we report solvothermally synthesized mixed-valent 0D metal-halides Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 ≤ x ≤ 7). Rb23SbIII 7SbV 2Cl54 crystallizes in an orthorhombic space group (Cmcm) with a unique, layered 0D structure driven by the arrangement of the 5s2 lone pairs of the SbIIICl6 octahedra. This red material is likely the true structure of a previously reported monoclinic "Rb2.67SbCl6" phase, the structure of which was not determined. Partially or fully substituting SbIII with isoelectronic BiIII yields the series Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 < x ≤ 7), which exhibits a similar layered 0D structure but with additional disorder that yields a trigonal crystal system with an enantiomorphic space group (R32). Second harmonic generation of 532 nm light from a 1064 nm laser using Rb23BiIII 7SbV 2Cl54 powder confirms the noncentrosymmetry of this space group. As with the prototypical mixed-valent pnictogen halides, the visible absorption bands of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family are the result of intervalent SbIII-SbV and mixed-valent BiIII-SbV charge transfer bands (CTB), with a blueshift of the absorption edge as BiIII substitution increases. No PL is observed from this family of semiconductors, but a crystal of Rb23BiIII 7SbV 2Cl54 exhibits a high resistivity of 1.0 × 1010 Ω·cm and X-ray photoconductivity with a promising µτ product of 8.0 × 10-5 cm2 s-1 V-1. The unique 0D layered structures of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family highlight the versatility of the ns2 lone pair in semiconducting metal-halides, pointing the way toward new functional 0D metal-halide compounds.

11.
Nat Commun ; 12(1): 981, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579913

ABSTRACT

Traditional fluorescence-based tags, used for anticounterfeiting, rely on primitive pattern matching and visual identification; additional covert security features such as fluorescent lifetime or pattern masking are advantageous if fraud is to be deterred. Herein, we present an electrohydrodynamically printed unicolour multi-fluorescent-lifetime security tag system composed of lifetime-tunable lead-halide perovskite nanocrystals that can be deciphered with both existing time-correlated single-photon counting fluorescence-lifetime imaging microscopy and a novel time-of-flight prototype. We find that unicolour or matching emission wavelength materials can be prepared through cation-engineering with the partial substitution of formamidinium for ethylenediammonium to generate "hollow" formamidinium lead bromide perovskite nanocrystals; these materials can be successfully printed into fluorescence-lifetime-encoded-quick-read tags that are protected from conventional readers. Furthermore, we also demonstrate that a portable, cost-effective time-of-flight fluorescence-lifetime imaging prototype can also decipher these codes. A single comprehensive approach combining these innovations may be eventually deployed to protect both producers and consumers.

12.
Adv Mater ; 33(9): e2007355, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33480450

ABSTRACT

Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .

13.
ACS Mater Lett ; 2(9): 1218-1232, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32954359

ABSTRACT

Low-dimensional metal halides have been the focus of intense investigations in recent years following the success of hybrid lead halide perovskites as optoelectronic materials. In particular, the light emission of low-dimensional halides based on the 5s2 cations Sn2+ and Sb3+ has found utility in a variety of applications complementary to those of the three-dimensional halide perovskites because of its unusual properties such as broadband character and highly temperature-dependent lifetime. These properties derive from the exceptional chemistry of the 5s2 lone pair, but the terminology and explanations given for such emission vary widely, hampering efforts to build a cohesive understanding of these materials that would lead to the development of efficient optoelectronic devices. In this Perspective, we provide a structural overview of these materials with a focus on the dynamics driven by the stereoactivity of the 5s2 lone pair to identify the structural features that enable strong emission. We unite the different theoretical models that have been able to explain the success of these bright 5s2 emission centers into a cohesive framework, which is then applied to the array of compounds recently developed by our group and other researchers, demonstrating its utility and generating a holistic picture of the field from the point of view of a materials chemist. We highlight those state-of-the-art materials and applications that demonstrate the unique capabilities of these versatile emissive centers and identify promising future directions in the field of low-dimensional 5s2 metal halides.

14.
ACS Cent Sci ; 6(7): 1138-1149, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32724848

ABSTRACT

Lead-halide perovskites increasingly mesmerize researchers because they exhibit a high degree of structural defects and dynamics yet nonetheless offer an outstanding (opto)electronic performance on par with the best examples of structurally stable and defect-free semiconductors. This highly unusual feature necessitates the adoption of an experimental and theoretical mindset and the reexamination of techniques that may be uniquely suited to understand these materials. Surprisingly, the suite of methods for the structural characterization of these materials does not commonly include nuclear magnetic resonance (NMR) spectroscopy. The present study showcases both the utility and versatility of halide NMR and NQR (nuclear quadrupole resonance) for probing the structure and structural dynamics of CsPbX3 (X = Cl, Br, I), in both bulk and nanocrystalline forms. The strong quadrupole couplings, which originate from the interaction between the large quadrupole moments of, e.g., the 35Cl, 79Br, and 127I nuclei, and the local electric-field gradients, are highly sensitive to subtle structural variations, both static and dynamic. The quadrupole interaction can resolve structural changes with accuracies commensurate with synchrotron X-ray diffraction and scattering. It is shown that space-averaged site-disorder is greatly enhanced in the nanocrystals compared to the bulk, while the dynamics of nuclear spin relaxation indicates enhanced structural dynamics in the nanocrystals. The findings from NMR and NQR were corroborated by ab initio molecular dynamics, which point to the role of the surface in causing the radial strain distribution and disorder. These findings showcase a great synergy between solid-state NMR or NQR and molecular dynamics simulations in shedding light on the structure of soft lead-halide semiconductors.

15.
Sci Rep ; 10(1): 8229, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32427897

ABSTRACT

Understanding the structure and dynamics of newcomer optoelectronic materials - lead halide perovskites APbX3 [A = Cs, methylammonium (CH3NH3+, MA), formamidinium (CH(NH2)2+, FA); X = Cl, Br, I] - has been a major research thrust. In this work, new insights could be gained by using 207Pb solid-state nuclear magnetic resonance (NMR) spectroscopy at variable temperatures between 100 and 300 K. The existence of scalar couplings 1JPb-Cl of ca. 400 Hz and 1JPb-Br of ca. 2.3 kHz could be confirmed for MAPbX3 and CsPbX3. Diverse and fast structure dynamics, including rotations of A-cations, harmonic and anharmonic vibrations of the lead-halide framework and ionic mobility, affect the resolution of the coupling pattern. 207Pb NMR can therefore be used to detect the structural disorder and phase transitions. Furthermore, by comparing bulk and nanocrystalline CsPbBr3 a greater structural disorder of the PbBr6-octahedra had been confirmed in a nanoscale counterpart, not readily captured by diffraction-based techniques.

16.
Angew Chem Int Ed Engl ; 59(34): 14490-14497, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32472624

ABSTRACT

Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.

17.
ACS Nano ; 13(10): 11642-11652, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31585035

ABSTRACT

The conventional strategy of synthetic colloidal chemistry for bright and stable quantum dots has been the production of epitaxially matched core/shell heterostructures to mitigate the presence of deep trap states. This mindset has been shown to be incompatible with lead halide perovskite nanocrystals (LHP NCs) due to their dynamic surface and low melting point. Nevertheless, enhancements to their chemical stability are still in great demand for the deployment of LHP NCs in light-emitting devices. Rather than contend with their attributes, we propose a method in which we can utilize their dynamic, ionic lattice and uniquely defect-tolerant band structure to prepare non-epitaxial salt-shelled heterostructures that are able to stabilize these materials against their environment, while maintaining their excellent optical properties and increasing scattering to improve out-coupling efficiency. To do so, anchored LHP NCs are first synthesized through the heterogeneous nucleation of LHPs onto the surface of microcrystalline carriers, such as alkali halides. This first step stabilizes the LHP NCs against further merging, and this allows them to be coated with an additional inorganic shell through the surface-mediated reaction of amphiphilic Na and Br precursors in apolar media. These inorganically shelled NC@carrier composites offer significantly improved chemical stability toward polar organic solvents, such as γ-butyrolactone, acetonitrile, N-methylpyrrolidone, and trimethylamine, demonstrate high thermal stability with photoluminescence intensity reversibly dropping by no more than 40% at temperatures up to 120 °C, and improve compatibility with various UV-curable resins. This mindset for LHP NCs creates opportunities for their successful integration into next-generation light-emitting devices.

18.
Nat Mater ; 18(8): 846-852, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31263225

ABSTRACT

Although metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence lifetime of low-dimensional, perovskite-like tin-halides and apply this property to thermal imaging. The photoluminescence lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns °C-1). Typically, this sensitive range spans up to 100 °C, and it is both compound-specific and shown to be compositionally and structurally tunable from -100 to 110 °C going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through the implementation of cost-effective hardware for fluorescence lifetime imaging, based on time-of-flight technology, these thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.

19.
Chem Mater ; 31(6): 2121-2129, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30930536

ABSTRACT

Hybrid organic-inorganic main-group metal halide compounds are the subject of intense research owing to their unique optoelectronic characteristics. In this work, we report the synthesis, structure, and electronic and optical properties of a family of hybrid tin (II) bromide compounds comprising guanidinium [G, C(NH2)3 +] and mixed cesium-guanidinium cations: G2SnBr4, CsGSnBr4, and Cs2GSn2Br7. G2SnBr4 has a one-dimensional structure that consists of chains of corner-sharing [SnBr5]2- square pyramids and G cations situated in between the chains. Cs+ exhibits a pronounced structure-directing effect where a mixture of Cs+ and G cations forms mono- and bilayered two-dimensional perovskites: CsGSnBr4 and Cs2GSn2Br7. Furthermore, the flat shapes of the guanidinium cations induce anisotropic out-of-plane tilts of the [SnBr6]4- octahedra in the CsGSnBr4 and Cs2GSn2Br7 compounds. In G2SnBr4, the Sn lone pair is highly stereoactive and favors non-octahedral, that is, square pyramidal coordination of Sn(II). G2SnBr4 exhibits bright broad-band emission from self-trapped excitonic states, owing to its soft lattice and electronic localization. This emission in G2SnBr4 is characterized by a photoluminescence (PL) quantum yield of 2% at room temperature (RT; 75 ± 5% at 77 K) and a fast PL lifetime of 18 ns at room temperature.

20.
Angew Chem Int Ed Engl ; 57(35): 11329-11333, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29999575

ABSTRACT

The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero-dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite-derived zero-dimensional SnII material Cs4 SnBr6 is presented that exhibits room-temperature broad-band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4-x Ax Sn(Br1-y Iy )6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self-trapped exciton emission bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...