Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 42(1): 132-138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37231263

ABSTRACT

We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates. Avidity sequencing achieves high accuracy, with 96.2% and 85.4% of base calls having an average of one error per 1,000 and 10,000 base pairs, respectively. We show that the average error rate of avidity sequencing remained stable following a long homopolymer.


Subject(s)
DNA , Nucleotides , Nucleotides/genetics , Nucleotides/chemistry , DNA/genetics , DNA/chemistry , DNA Replication , Base Pairing , Polymers
2.
Proc Natl Acad Sci U S A ; 116(33): 16314-16319, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31363054

ABSTRACT

Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of Escherichia coli-an antibody clone, a protease of interest, and a ß-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified ß-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), ß-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aß40) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.


Subject(s)
Antibodies, Monoclonal/immunology , Peptide Hydrolases/genetics , Protease Inhibitors/immunology , Recombinant Proteins/immunology , Alzheimer Disease/immunology , Alzheimer Disease/therapy , Amino Acid Sequence/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/immunology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/immunology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/immunology , Aspergillosis/immunology , Aspergillosis/therapy , Cathepsin B/genetics , Cathepsin B/immunology , Escherichia coli/genetics , Humans , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/immunology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Matrix Metalloproteinase Inhibitors/immunology , Matrix Metalloproteinase Inhibitors/metabolism , Mice , Neoplasms/immunology , Neoplasms/therapy , Peptide Hydrolases/chemistry , Peptide Hydrolases/immunology , Periplasm/genetics , Protease Inhibitors/pharmacology , Proteolysis/drug effects , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Serine Proteases/genetics , Serine Proteases/immunology
3.
Antib Ther ; 1(2): 55-63, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30406213

ABSTRACT

Background: Proteases are one of the largest pharmaceutical targets for drug developments. Their dysregulations result in a wide variety of diseases. Because proteolytic networks usually consist of protease family members that share high structural and catalytic homology, distinguishing them using small molecule inhibitors is often challenging. To achieve specific inhibition, this study described a novel approach for the generation of protease inhibitory antibodies. As a proof of concept, we aimed to convert a matrix metalloproteinase (MMP)-14 specific inhibitor to MMP-9 specific inhibitory antibodies with high selectivity. Methods: An error-prone single-chain Fv (scFv) library of an MMP-14 inhibitor 3A2 was generated for yeast surface display. A dual-color competitive FACS was developed for selection on MMP-9 catalytic domain (cdMMP-9) and counter-selection on cdMMP-14 simultaneously, which were fused/conjugated with different fluorophores. Isolated MMP-9 inhibitory scFvs were biochemically characterized by inhibition assays on MMP-2/-9/-12/-14, proteolytic stability tests, inhibition mode determination, competitive ELISA with TIMP-2 (a native inhibitor of MMPs), and paratope mutagenesis assays. Results: We converted an MMP-14 specific inhibitor 3A2 into a panel of MMP-9 specific inhibitory antibodies with dramatic selectivity shifts of 690-4,500 folds. Isolated scFvs inhibited cdMMP-9 at nM potency with high selectivity over MMP-2/-12/-14 and exhibited decent proteolytic stability. Biochemical characterizations revealed that these scFvs were competitive inhibitors binding to cdMMP-9 near its reaction cleft via their CDR-H3s. Conclusions: This study developed a novel approach able to convert the selectivity of inhibitory antibodies among closely related protease family members. This methodology can be directly applied for mAbs inhibiting many proteases of biomedical importance.

4.
Biotechnol Bioeng ; 115(11): 2673-2682, 2018 11.
Article in English | MEDLINE | ID: mdl-30102763

ABSTRACT

Targeting effectual epitopes is essential for therapeutic antibodies to accomplish their desired biological functions. This study developed a competitive dual color fluorescence-activated cell sorting (FACS) to maturate a matrix metalloprotease 14 (MMP-14) inhibitory antibody. Epitope-specific screening was achieved by selection on MMP-14 during competition with N-terminal domain of tissue inhibitor of metalloproteinase-2 (TIMP-2) (nTIMP-2), a native inhibitor of MMP-14 binding strongly to its catalytic cleft. 3A2 variants with high potency, selectivity, and improved affinity and proteolytic stability were isolated from a random mutagenesis library. Binding kinetics indicated that the affinity improvements were mainly from slower dissociation rates. In vitro degradation tests suggested the isolated variants had half lives 6-11-fold longer than the wt. Inhibition kinetics suggested they were competitive inhibitors which showed excellent selectivity toward MMP-14 over highly homologous MMP-9. Alanine scanning revealed that they bound to the vicinity of MMP-14 catalytic cleft especially residues F204 and F260, suggesting that the desired epitope was maintained during maturation. When converted to immunoglobulin G, B3 showed 5.0 nM binding affinity and 6.5 nM inhibition potency with in vivo half-life of 4.6 days in mice. In addition to protease inhibitory antibodies, the competitive FACS described here can be applied for discovery and engineering biosimilars, and in general for other circumstances where epitope-specific modulation is needed.


Subject(s)
Antibodies/isolation & purification , Antibody Affinity , Drug Evaluation, Preclinical/methods , Epitopes/immunology , Immunologic Factors/isolation & purification , Matrix Metalloproteinase 14/immunology , Matrix Metalloproteinase Inhibitors/isolation & purification , Animals , Antibodies/immunology , Binding Sites , Flow Cytometry/methods , Half-Life , Immunologic Factors/immunology , Kinetics , Matrix Metalloproteinase 14/metabolism , Mice , Mutagenesis , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...