Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 36(16): 2635-45, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23868707

ABSTRACT

The efficiency of two extraction techniques--ultrasound-assisted extraction and pressurized liquid extraction--are compared and evaluated in the determination of parabens in compost samples. The extraction parameters for each technique were accurately optimized. The selected compounds were detected and quantified using ultra-performance LC MS/MS, operating in negative ESI and in SRM mode. The analytes were separated in less than 5 min. Ethylparaben (ring-(13)C6 labeled) was used as an internal standard. Two selective, sensitive, and accurate analytical methods were developed and validated. The LODs of the methods ranged from 3 to 7 ng/g and the LOQs from 10 to 23 ng/g, while inter- and intraday variability was under 6% in all cases. The methods were validated separately by using matrix-matched calibration and recovery assays with spiked samples. Recovery rates ranged from 94.0 to 105.0%. Compost samples were taken from different composting plants. Although the statistical comparison demonstrated no statistically significant differences between the two extraction techniques, the method based on pressurized liquid extraction was more sensitive than the ultrasound extraction based method.


Subject(s)
Liquid-Liquid Extraction/methods , Parabens/analysis , Sewage/analysis , Soil Pollutants/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Liquid-Liquid Extraction/instrumentation , Parabens/isolation & purification , Soil/chemistry , Soil Pollutants/analysis , Solid Phase Extraction/instrumentation , Tandem Mass Spectrometry/methods , Ultrasonics/methods
2.
J Phys Chem A ; 116(24): 6127-33, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22339496

ABSTRACT

Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.


Subject(s)
Chlorine/chemistry , Crotonates/chemistry , Hydroxyl Radical/chemistry , Atmospheric Pressure , Gases/chemistry , Kinetics , Molecular Structure , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...