Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(71): 18868-18872, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30259587

ABSTRACT

A copper iodide complex coordinated by three phosphine ligands with the formula [Cu2 I2 (Ph2 PC2 (C6 H4 )C2 PPh2 )3 ] exhibits solvatochromic and vapochromic luminescence properties. A mechanism based on solvent-dependent molecular motion appears to occur. The highly contrasted response observed upon THF solvent exposure makes this complex an appealing candidate for chemical sensor applications.

2.
Inorg Chem ; 54(20): 9821-5, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26418082

ABSTRACT

For the development of applications based on mechanochromic luminescent materials, a comprehensive study of the mechanism responsible for the emission changes is required. We report the study of a mechanochromic copper iodide cluster under hydrostatic pressure, which allows control of crystal packing via modification of the intermolecular interactions. In situ single-crystal powder X-ray diffraction analysis and emission measurements under pressure permit one to establish a direct correlation between the molecular structure and luminescence properties and, in particular, to demonstrate that cuprophilic interactions are responsible for the stimuli-responsive luminescence properties of such multinuclear coordination compounds.

3.
Inorg Chem ; 54(9): 4483-94, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25857746

ABSTRACT

An original copper(I) iodide cluster of novel geometry obtained by using a diphosphine ligand is reported and is formulated [Cu6I6(PPh2(CH2)3PPh2)3] (1). Interestingly, this sort of "eared cubane" cluster based on the [Cu6I6] inorganic core can be viewed as a combination of the two known [Cu4I4] units, namely, the cubane and the open-chair isomeric geometries. The synthesis, structural and photophysical characterisations, as well as theoretical study of this copper iodide along with the derived cubane (3) and open-chair (2) [Cu4I4(PPh3)4] forms, were investigated. A new polymorph of the cubane [Cu4I4(PPh3)4] cluster is indeed presented (3). The structural differences of the clusters were analyzed by solid-state nuclear magnetic resonance spectroscopy. Luminescence properties of the three clusters were studied in detail as a function of the temperature showing reversible luminescence thermochromism for 1 with an intense orange emission at room temperature. This behavior presents different feature compared to the cubane cluster and completely contrasts with the open isomer, which is almost nonemissive at room temperature. Indeed, the thermochromism of 1 differs by a concomitant increase of the two emission bands by lowering the temperature, in contrast to an equilibrium phenomenon for 3. The luminescence properties of 2 are very different by exhibiting only one single band when cooled. To rationalize the different optical properties observed, density functional theory calculations were performed for the three clusters giving straightforward explanation for the different luminescence thermochromism observed, which is attributed to different contributions of the ligands to the molecular orbitals. Comparison of 3 with its [Cu4I4(PPh3)4] cubane polymorphs highlights the sensibility of the emission properties to the cuprophilic interactions.


Subject(s)
Copper/chemistry , Iodides/chemistry , Organometallic Compounds/chemical synthesis , Phosphines/chemistry , Crystallography, X-Ray , Ligands , Luminescence , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Quantum Theory , Temperature , Thermodynamics
4.
Chemistry ; 21(15): 5892-7, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25755012

ABSTRACT

Luminescent mechanochromic materials are particularly appealing for the development of stimuli-responsive materials. Establishing the mechanism responsible for the mechanochromism is always an issue owing to the difficulty in characterizing the ground phase. Herein, the study of real crystalline polymorphs of a mechanochromic and thermochromic luminescent copper iodide cluster permits us to clearly establish the mechanism involved. The local disruption of the crystal packing induces changes in the cluster geometry and in particular the modification of the cuprophilic interactions, which consequently modify the emissive states. This study constitutes a step further toward the understanding of the mechanism involved in the mechanochromic luminescent properties of multimetallic coordination complexes.

5.
J Am Chem Soc ; 136(32): 11311-20, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25076411

ABSTRACT

An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...