Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Physiol Behav ; 283: 114614, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38866299

ABSTRACT

The aim of this study was to analyze the impact of endurance training (E), strength training (S), or combined training (SE), along with caloric restriction diet, compared to only diet and physical activity recommendations (C, control), on the quality of life in individuals with obesity. One hundred and twenty obese participants (61 males), aged 18-50 years, were randomly assigned to the different experimental groups, with ninety-six completing the study. The intervention period spanned 22 weeks (3 times per week). All subjects followed a hypocaloric diet, and quality of life was assessed using the SF36 questionnaire before and after the training program. A significant improvement was observed in emotional role following the S (Baseline: 85.06 ± 30.32; Post: 96.00 ± 11.06; p = 0.030) and SE (Baseline: 76.67 ± 35.18; Post: 91.30 ± 22.96; p = 0.010) programs, but not after E (Baseline: 83.33 ± 29.40; Post: 78.26 ± 35.69; p = 0.318) and C (Baseline: 77.01 ± 34.62; Post: 79.37 ± 37.23; p = 0.516). No significant main effect was observed in any other outcome measured. Overall, all groups demonstrated improvements in quality-of-life outcomes. In conclusion, any physical exercise intervention combined with caloric restriction, physical activity recommendations, and nutritional habits resulted in an enhancement of quality of life.


Subject(s)
Caloric Restriction , Exercise , Obesity , Quality of Life , Humans , Male , Quality of Life/psychology , Female , Adult , Middle Aged , Adolescent , Young Adult , Exercise/psychology , Exercise/physiology , Obesity/psychology , Obesity/diet therapy , Resistance Training , Endurance Training , Surveys and Questionnaires , Treatment Outcome
2.
J Strength Cond Res ; 38(7): 1330-1340, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38595233

ABSTRACT

ABSTRACT: Ramos-Campo, DJ, Benito-Peinado, PJ, Caravaca, LA, Rojo-Tirado, MA, and Rubio-Arias, JÁ. Efficacy of split versus full-body resistance training on strength and muscle growth: a systematic review with meta-analysis. J Strength Cond Res 38(7): 1330-1340, 2024-No previous study has systematically compared the effect of 2 resistance training routines commonly used to increase muscle mass and strength (i.e., split [Sp] and full-body [FB] routines). Our objective was to conduct a systematic review and meta-analysis following PRISMA guidelines to compare the effects on strength gains and muscle growth in healthy adults. 14 studies (392 subjects) that compared Sp and FB routines in terms of strength adaptations and muscle growth were included. Regarding the effects of the Sp or FB routine on both bench press and lower limbs strength, the magnitude of the change produced by both routines was similar (bench press: mean difference [MD] = 1.19; [-1.28, 3.65]; p = 0.34; k = 14; lower limb: MD = 2.47; [-2.11, 7.05]; p = 0.29; k = 14). Concerning the effect of the Sp vs. FB routine on muscle growth, similar effects were observed after both routines in the cross-sectional area of the elbow extensors (MD = 0.30; [-2.65, 3.24]; p = 0.84; k = 4), elbow flexors (MD = 0.17; [-2.54, 2.88]; p = 0.91; k = 5), vastus lateralis (MD = -0.08; [-1.82, 1.66]; p = 0.93; k = 5), or lean body mass (MD = -0.07; [-1.59, 1.44]; p = 0.92; k = 6). In conclusion, the present systematic review and meta-analysis provides solid evidence that the use of Sp or FB routines within a resistance training program does not significantly impact either strength gains or muscle hypertrophy when volume is equated. Consequently, individuals are free to confidently select a resistance training routine based on their personal preferences.


Subject(s)
Muscle Strength , Muscle, Skeletal , Resistance Training , Humans , Resistance Training/methods , Muscle Strength/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/growth & development , Lower Extremity/physiology , Muscle Development/physiology
3.
Apunts, Med. esport (Internet) ; 53(199): 91-97, jul.-sept. 2018. tab, graf
Article in Spanish | IBECS | ID: ibc-180011

ABSTRACT

Existe un consenso general de que hay dos puntos de ruptura de la ventilación durante el ejercicio incremental, el umbral ventilatorio 1 (VT1) y el umbral ventilatorio 2 (VT2), que marcan los límites de la transición aeróbica-anaeróbica. El área interumbral se ha definido como un parámetro que relaciona los umbrales ventilatorios. El objetivo principal del presente estudio fue examinar el área entre los umbrales (ITA), es decir, el área entre VT1 y VT2 para la función ventilación/absorción de oxigeno. Seiscientos seis varones con diferentes estados de condición física, desarrollaron una prueba de esfuerzo incremental y se registraron los umbrales ventilatorios. EL ITA es un trapecio cuya área se calcula como la suma del área del triángulo y rectángulo que lo forman, tal como se muestra en la figura entre VT1 y VT2 y que permanecen por debajo de la función VO2/VE. La media de ITA para la función VO2-VE fue mayor en los ciclistas, como representantes de deportistas de resistencia, frente al área correspondiente a los estudiantes de educación física con menores niveles de resistencia (120±34 vs. 86±40L2/min2). Estos resultados sugieren que la determinación del ITA puede reflejar adecuadamente el estado metabólico durante el proceso de transición aeróbico-anaeróbico durante las pruebas de esfuerzo incrementales


There is a general consensus in the literature regarding the existence of two ventilation break points during incremental exercise, i.e., Ventilatory Threshold 1 (VT1) and Ventilatory Threshold 2 (VT2), which mark the boundaries of the aerobic-anaerobic transition. The Inter-Threshold Area (ITA) has been defined as a parameter that connects the ventilatory thresholds. The main aim of the present study was to examine the ITA i.e., the expressed area between VT1 and VT2 for the function: ventilation÷oxygen uptake (VE/VO2 in L2min2) in individuals with various endurance capacities. Six hundred and six men with different levels of endurance completed an incremental exercise test and their ventilatory thresholds were recorded. The ITA is a trapezoid whose area is calculated as the sum of the area of the triangle and rectangle that form it between VT1 and VT2 below the VO2/VE function. The mean ITA for the function VO2-VE was greater in cyclists, as the main representatives for endurance athletes, than the mean corresponding to physical education students, who averaged a lower endurance level (120±34 vs. 86±40L2/min2). The results suggest that the determination of the ITA can reflect metabolic status throughout the aerobic-anaerobic transition during maximal incremental exercise tests


Subject(s)
Humans , Male , Adolescent , Young Adult , Adult , Physical Endurance/physiology , Resistance Training , Ergometry/methods , Oxygen Consumption , Electrocardiography , 28599 , Anthropometry
4.
Arch. med. deporte ; 30(153): 14-20, ene.-feb. 2013. tab, graf
Article in Spanish | IBECS | ID: ibc-118847

ABSTRACT

Objetivos: Comparar la precisión de ecuaciones para estimar la frecuencia cardiaca máxima (FCM) en cicloergómetro para jóvenes. Material y Métodos: La muestra estuvo compuesta por 51 hombres (22,2 ± 2,7 años) y 17 mujeres (21,9 ± 1,9 años). La prueba consistió en realizar, tras un período de calentamiento de 10 minutos, una fase de ejercicio a la máxima velocidad durante un minuto en cicloergómetro, aplicándole al evaluado como resistencia una carga de 3 vatios por cada Kg de peso corporal. Fueron consideradas un total de 53 ecuaciones para contrastar la FCM obtenida durante la prueba máxima en cicloergómetro. Se empleó la t de Student para muestras relacionadas, para comparar los valores medios entre los dos grupos(FCM predicha vs FCM obtenida) con el fi n de determinar la similitud entre los datos. Resultados: Se obtuvo una FCM durante la prueba en ciclo de 183,5 ± 8,1 lpm (hombres) y 175,6 ± 8,5 lpm (mujeres). Entre las 53 fórmulas de predicción de FCM evaluadas para el ejercicio en cicloergómetro, entre los hombres solamente seis fórmulas presentaron un P > 0.05, sin embargo entre las mujeres fueron aceptadas solamente dos ecuaciones. La ecuación (FCM =220 - edad) ha sobrevalorado sistemáticamente la FCM predicha tanto en hombres como en mujeres. Conclusiones: La mayor parte de las ecuaciones evaluadas no son precisas para estimar la FCM en cicloergómetro. Para predecir la FCM en ejercicio de cicloergometría en hombres se recomienda la ecuación (FCM = 202 - 0,72 * edad) y para mujeres (CM = 189 - 0,56 * edad) o (FCM = 196 - 0,9 * edad). No se sugiere emplear la ecuación (FCM = 220 - edad) para predecir la FCM para una población de jóvenes adultos (AU)


Objectives: Comparing equations to predict the maximum heart rate (MHR) in cycle ergometer in young people. Material and Methods: The sample was composed by 51 male (22.2 ± 2.7 years) and 17 female (21.9 ± 1.9 years). After a10 min warm–up period, the subjects performed a maximum speed test during 1 minute, applying as resistance a load of 3watts per Kg body weight. A total of 53 equations were considered to contrast their results with the MHR obtained during the maximum test at cycle ergometer. Paired Student’s t-test was used to compare the mean values between the groups (MHR prev and MHR obt) in order to determinate the similarity between the data. Results: The MHR mean values were 183.5 ± 8.1 bpm (male) and 175.6 ± 8.5 bpm (female). Among the MHR prediction equations for cycle exercise, only six of them showed a p > 0.05 for men, meanwhile only two equations were accepted for women. The equation (MHR = 220 - age) systematically overestimated the predicted MHR both in men and women. Conclusions: The most suitable equation to predict MHR in cycle ergometer exercise for men was (MHR = 202 - 0,72 * age),while for women (MHR = 189 - 0.56 * age) or (MHR = 196 - 0.9 * age) were the most adequate. We suggest no to use the equation (MHR = 220 - age) to predict MHR in young people (AU)


Subject(s)
Humans , Male , Female , Young Adult , Heart Rate , Exercise Test/methods , Ergometry/methods , Reference Values
5.
Arch. med. deporte ; 29(147): 517-526, ene.-feb. 2012. tab
Article in Spanish | IBECS | ID: ibc-111876

ABSTRACT

Objetivo: Analizar la relación entre el nivel de actividad física registrada y el percibido en población con discapacidad física mediante acelerometría y cuestionario, así como estudiar las diferencias evaluadas con ambos instrumentos según nivel de actividad física personal y otras variables como el género o uso de la silla de ruedas. Metodología: La muestra la componen 37 sujetos con discapacidad física (28 hombres y 9 mujeres), con una edad media de 38 ±10,9 años. Se dividió a la muestra en tres grupos en función del número de horas de actividad física semanal: sedentarios (S, n = 8), practicantes habituales (PH, n = 13)y practicantes de alto rendimiento (AR, n = 16). Los sujetos llevaron un monitor metabólico de actividad física Sense Wear Pro Armband (SWA) durante siete días, las 24 horas. Una vez retirado, se administró el cuestionario Physical Activity Scalefor Individuals with Physical Disabilities (Escala de Actividad Física para Personas con Discapacidades Físicas) para medir la actividad física percibida, recogiéndose también datos antropométricos y personales. Resultados: La correlación de Pearson (n = 37) mostró relación entre el PASIPD y las variables METS promedio(r=0,52; p<0,01), gasto energético en activo (r =0,35; p<0,05)y duración de la actividad física (r =0,53; p<0,01). El PASIPD (en MET hr/día) arrojó los siguientes valores según grupo: S8,55 ± 4,35; PH 12,99 ±5,88; AR 27,41 ±19,66. Según grupos,el SWA registró, entre otras variables, los METs promedio (S1,35 ± 0,26; PH 1,46 ± 0,19; AR 1,70 ± 0,18) y la duración de la actividad física (S 10:33:07 ± 07:47:42; PH 12:59:32±07:21:38; AR 22:22:26 ± 07:58:58). El ANOVA mostró diferencias (p<0,05) entre grupos para el PASIPD y las citadas variables del SWA. Conclusiones: Este estudio confirma la idoneidad de utilizar de forma combinada un cuestionario y un monitor metabólico de actividad física en población con discapacidad física para la evaluación del nivel de actividad física en esta población (AU)


Objective: To analyze the relationship between registered and perceived physical activity in persons with physical disabilities using accelerometry and questionnaire, and to study the differences evaluated with both instruments regarding personal level of physical activity and other variables like gender or use of a wheel chair. Methodology: 37 subjects, 28 men and 9 women, mean age 38 years (± 10.9) with physical disabilities. The sample was divided into three groups depending on the number of hours of weekly physical activity: sedentary (S, n = 8), regular practitioners (PH, n = 13) and high-performance practitioners (AR, n = 16). The subjects wore a physical activity monitor metabolic Sense Wear Pro Armband (SWA) for seven days,24 hours. Once removed, the questionnaire Physical Activity Scale for Individuals with Physical Disabilities (PASIPD 1)was administered to measure perceived physical activity. Anthropometric and demographic data were also collected. Results: Pearson’s rank correlation coefficient (n =37) shown relationship between PASIPD and the SWA variables average METS (r =0,52; p<0,01), active energy expenditure (r =0,35; p<0,05) and duration of physical activity (r =0,53; p<0,01). The PASIPD (en MET hr/day)yielded the following values according to groups: S 8.55±4.35, PH 12.99 ± 5.88; AR 27.41 ±19.66. Regarding groups, the SWA showed, among other variables, the average METs (S 1.35 ± 0.26, PH 1.46 ± 0.19; AR 1.70 ± 0.18) and duration of physical activity (S 10:33:07 ± 7:47:42; PH12:59:32 ± 7:21:38; AR 22:22:26 ± 7:58:58). ANOVA shown differences between groups (p<0.05) for PASIPD and the above mentioned SWA variables. Conclusions: This study confirms the appropriateness of using a combined questionnaire and a metabolic monitor physical activity in people with physical disabilities for level of physical activity evaluation in this population (AU)


Subject(s)
Humans , Male , Female , Adult , Motor Activity/physiology , Athletic Performance/physiology , Disabled Persons/education , Disabled Persons/statistics & numerical data , Obesity/epidemiology , Obesity/prevention & control , Psychomotor Performance/physiology , Surveys and Questionnaires , 28599 , Analysis of Variance , Energy Metabolism/physiology , Foods for Persons Engaged in Physical Activities , Energy Consumption/prevention & control
6.
Arch. med. deporte ; 22(109): 397-405, sept.-oct. 2005. ilus, tab
Article in Es | IBECS | ID: ibc-040967

ABSTRACT

De forma tradicional, se explica el estado ácido-base en términos cuantitativos de la variable dependiente pH y dos variables elementales independientes, lactato y bicarbonato, en relación a la intensidad del ejercicio. Cuando la intensidad del ejercicio alcanza un valor determinado, el incremento de la concentración de ácido láctico en plasma determina un aumento de la concentración de protones ([H+]), con un descenso de la concentración de bicarbonato ([HC03-]). Sin embargo, la explicación dada al estado ácido-básico durante el ejercicio, aunque sencilla y de fácil compresión, tiene considerables limitaciones, que han hecho necesario dar una visión físico-química. Esta nueva concepción indica que los factores que afectan a la [H +) se pueden agrupar en una expresión polinómica de cuarto grado: A[H+)4 + B[H+P + C[H+]2 + D[H+) + E = O Los coeficientes de esta expresión dependen principalmente de la diferencia de iones fuertes (DIF), la presión parcial de dióxido de carbono (PpC02) y de la concentración de aniones totales (AT-). Por tanto, para conocer el estado ácido-básico en ejercicio de intensidad progresiva en términos físico-químicos es necesario conocer la concentración de las tres variables inde pendientes (DIF, PpC02 y AT -). Partiendo de la situación de reposo, el organismo "reordena" las variables independientes al objeto de mantener estable la concentración de protones. Es objetivo de esta revisión analizar, desde el punto de vista físico químico la regulación del estado ácido-base en esfuerzos de resistencia


Tradicionally, the state is explained acid-bases on quantitative terms of the dependent variable pH and two independent elementary variables, lactate and bicarbonate, in relation to the intensity of the exercise. When the intensity of the exercise reaches a determined value, the increase of lactic acid concentration in plasma determines an increase of the proton concentration ([H+]), with a reduction of the bicarbonate concentration ([HC03-]). However, the explanation given to the acid-basic state during the exercise, although simple and of easy compression, has considerable limitations, which have done necessary to give to a physicalchemistry point of view. This new conception indicates, that the factors that affect to [ H + ) can group in a polinómic expression of fourth degree: A[H+)4 + B[H+P + C[H+]2 + D[H+) + E = O The coefficients of this expression depend mainly on the strong ion difference (DIF), the partial dioxide pressure of carbon (PpCO) and the total anion concentration (AT -). Therefore, to know the acid-basic state in incremental exercise in terms physical-chemistries it is necessary to know the concentration the three independent variables (DIF, PpC02 and AT -). Starting off of the rest situation, the organism "rearranges" the independent variables to maintain the proton concentration stable. He is objective of this revision to analyze, from the physical-chemestry point of view, the regulation of the state acid-bases on endurance exercise


Subject(s)
Humans , Exercise/physiology , Hydrogen-Ion Concentration , Bicarbonates/analysis , Bicarbonates/metabolism , Water-Electrolyte Balance/physiology , Lactic Acid/blood , Lactic Acid/metabolism , 24965 , Bicarbonates/blood , Physical Exertion , Lactic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...