Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
In Silico Pharmacol ; 12(1): 48, 2024.
Article in English | MEDLINE | ID: mdl-38828443

ABSTRACT

The continuous search for more effective options against well-known pathogens such as Candida albicans remains the rationale for the search for novel lead compounds from various sources. This study aims to investigate the chemical structure, chemical properties, of 5-(2-((5-(((1S,3R) -3-(5-acetamido-1,3,4-thiadiazolidin-2-yl) cyclopentyl) methyl)-1,3,4-thiadiazolidin-2-yl)amino)-2-oxoethyl)-2-methyl-2,3-dihydro-1H-pyrazol-3-ide designated ATCTP using DFT method ωB97XD/-311 + + g(2d, 2p) and the biological potential of compound ATCTP against Candida albicans using molecular docking and ADMET studies. Geometry optimization was carried out in DMSO, ethanol. gas and water revealing minute discrepancies in bond length and wider differences in bond angles. Frontier molecular orbital investigations reveal HOMO-LUMO energy gap magnitude in decreasing order of ATCTP_Gas > ATCTP_Water > ATCTP_ethanol > ATCTP_DMSO inferring that water influences chemical stability of the compound the most compared to ethanol and DMSO. Density of state investigations have revealed electron density contributions at corresponding energy peaks. In silico pharmacokinetic predicts ATCTP not to be cytotoxic, hepatotoxic, immunotoxic or mutagenic but probable mutagen. Molecular docking investigation of ATCTP against aspartic proteinase of Candida albicans (ID: 2QZX) in comparison with standard drug Fluconazole. Compound ATCTP had higher binding affinity (- 8.1 kcal/mol) compared to that of the standard drug fluconazole (- 5.6 kcal/mol) which records 4 conventional hydrogen interactions compared to 2 formed in the interaction of ATCTP + 2QZX. ATCTP also reports binding affinity of - 7.2 kcal/mol which reportedly surpassed that of 2QZX interaction with fluconazole (- 5.7 kcal/mol). ATCTP binds with lanosterol14-α-demethylase (5v5z) with binding affinity of - 9.7 kcal/mol binding to active site amino acid residues of the protein compared to fluconazole + 5v5z (- 8.0 kcal/mol). ATCTP is therefore recommended to be a lead compound for the possible design of a new and more effective anti-candida therapeutic compound.

2.
RSC Adv ; 14(8): 5351-5369, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38348297

ABSTRACT

Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.

3.
Appl Biochem Biotechnol ; 196(1): 417-435, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37140782

ABSTRACT

Dehydroandrographolide (DA) was isolated and experimentally characterized utilizing FT-IR, UV-Vis, and NMR spectroscopy techniques along with detailed theoretical modelled at the DFT/B3LYP-D3BJ/6-311 + + G(d,p) level of theory. Substantially, molecular electronic property investigations in the gaseous phase alongside five different solvents (ethanol, methanol, water, acetonitrile and DMSO) were comprehensively reported and compared with the experimental results. The globally harmonized scale (GHS), which is used to identify and label chemicals, was also utilized to demonstrate that the lead compound predicted an LD50 of 1190 mg/kg. This finding implies that consumers can safely consume the lead molecule. Notable impacts on hepatotoxicity, cytotoxicity, mutagenicity, and carcinogenicity were likewise found to be minimal to nonexistent for the compound. Additionally, in order to account for the biological performance of the studied compound, in-silico molecular docking simulation analysis was examined against different anti-inflammatory target of enzymes (3PGH, 4COX, and 6COX). From the examination, it can be inferred that DA@3PGH, DA@4COX, and DA@6COX, respectively, showed significant negative binding affinities of -7.2 kcal/mol, -8.0 kcal/mol, and - 6.9 kcal/mol. Thus, the high mean binding affinity in contrast to conventional drugs further reinforces these results as an anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Spectrum Analysis, Raman , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Magnetic Resonance Spectroscopy , Anti-Inflammatory Agents/pharmacology , Spectrophotometry, Ultraviolet
4.
Food Chem ; 440: 138234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38145582

ABSTRACT

The aim of the study was to identify potent antioxidant peptides sourced from coix seed, analyze the structure-activity relationship through molecular docking and quantum chemical calculation. Molecular docking results showed that among thirteen peptides selected in silico, eight had favourable binding interaction with the Keap1-Kelch domain (2FLU). Promising peptides with significant binding scores were further evaluated using quantum calculation. It was shown that peptide FFDR exhibited exceptional stability, with a high energy gap of 5.24 eV and low Highest Occupied Molecular Orbitals (HOMO) and Lowest Unoccupied Molecular Orbitals (LUMO) values. Furthermore, FFDR displayed the capacity to enhance the expression of Nrf2-Keap1 antioxidant genes (CAT, SOD, GSH-Px) and improved cellular redox balance by increasing reduced glutathione (GSH) while reducing oxidized glutathione (GSSG) and malonaldehyde (MDA) levels. These findings highlight the potential of coix seed peptides in developing novel, effective and stable antioxidant-based functional foods.


Subject(s)
Antioxidants , Coix , Humans , Antioxidants/analysis , Molecular Docking Simulation , Hep G2 Cells , Coix/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Peptides/metabolism , Seeds/chemistry
5.
Sci Rep ; 13(1): 18856, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914823

ABSTRACT

This comprehensive study was dedicated to augmenting the sensing capabilities of Ni@GP_PEDOT@H2S through the strategic functionalization with nitrogen, phosphorus, and sulfur heteroatoms. Governed by density functional theory (DFT) computations at the gd3bj-B3LYP/def2svp level of theory, the investigation meticulously assessed the performance efficacy of electronically tailored nanocomposites in detecting H2S gas-a corrosive byproduct generated by sulfate reducing bacteria (SRB), bearing latent threats to infrastructure integrity especially in the oil and gas industry. Impressively, the analysed systems, comprising Ni@GP_PEDOT@H2S, N_Ni@GP_PEDOT@H2S, P_Ni@GP_PEDOT@H2S, and S_Ni@GP_PEDOT@H2S, unveiled both structural and electronic properties of noteworthy distinction, thereby substantiating their heightened reactivity. Results of adsorption studies revealed distinct adsorption energies (- 13.0887, - 10.1771, - 16.8166, and - 14.0955 eV) associated respectively with N_Ni@GP_PEDOT@H2S, P_Ni@GP_PEDOT@H2S, S_Ni@GP_PEDOT@H2S, and Ni@GP_PEDOT systems. These disparities vividly underscored the diverse strengths of the adsorbed H2S on the surfaces, significantly accentuating the robustness of S_Ni@GP_PEDOT@H2S as a premier adsorbent, fuelled by the notably strong sulfur-surface interactions. Fascinatingly, the sensor descriptor findings unveiled multifaceted facets pivotal for H2S detection. Ultimately, molecular dynamic simulations corroborated the cumulative findings, collectively underscoring the pivotal significance of this study in propelling the domain of H2S gas detection and sensor device innovation.

6.
RSC Adv ; 13(48): 34078-34096, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38020013

ABSTRACT

This study employed density functional theory (DFT) computational techniques at the ωB97XD/def2svp level of theory to comprehensively explore the electronic behavior of Fe-group transition metal (Fe, Ru, Os) coordination of Se-doped graphitic carbon (Se@g-C3N4) nanosystems in the smart delivery of zidovudine (ZVD), an antiretroviral drug. The HOMO-LUMO results of the interactions show a general reduction in energy gap values across all complexes in the following order: ZVD_Se@C3N4 < ZVD_Ru_Se@C3N4 < ZVD_Fe_Se@C3N4 < ZVD_Os_Se@C3N4. ZVD_Se@C3N4 exhibits the smallest post-interaction band gap of 3.783 eV, while ZVD_Os_Se@C3N4 presents the highest energy band gap of 5.438 eV. Results from the corrected adsorption energy (BSSE) revealed that Os_Se@C3N4 and Ru_Se@C3N4 demonstrated more negative adsorption energies of -2.67 and -2.701 eV, respectively, pointing to a more favorable interaction between ZVD and these systems, thus potentially enhancing the drug delivery efficiency. The investigation into the drug release mechanism from the adsorbents involved a comprehensive examination of the dipole moment and the influence of pH, shedding light on the controlled release of ZVD. Additionally, investigating the energy decomposition analysis (EDA) revealed that ZVD_Ru_Se@C3N4 and ZVD_Fe_Se@C3N4 exhibited the same total energy of -787.7 kJ mol-1. This intriguing similarity in their total energy levels suggested that their stability was governed by factors beyond reactivity, possibly due to intricate orbital interactions. Furthermore, analyzing the bond dissociation energies showed that all systems exhibited negative enthalpy values, indicating that these systems were exothermic at both surface and interaction levels, thus suggesting that these processes emitted heat, contributing to the surrounding thermal energy.

7.
ACS Omega ; 8(45): 42340-42355, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024685

ABSTRACT

This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.

8.
Heliyon ; 9(10): e20682, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867907

ABSTRACT

In recent years, scientists have been actively exploring and expanding biosensor technologies and materials to meet the growing societal demands in healthcare and other fields. This study aims to revolutionize biosensors by using density functional theory (DFT) at the cutting-edge B3LYP-GD3BJ/def2tzsvp level to investigate the sensing capabilities of (Cu, Ni, and Zn) doped on Aluminum nitride (Al12N12) nanostructures. Specifically, we focus on their potential to detect, analyze, and sense the drug flutamide (FLU) efficiently. Through advanced computational techniques, we explore molecular interactions to pave the way for highly effective and versatile biosensors. The adsorption energy values of -38.76 kcal/mol, -39.39 kcal/mol, and -39.37 kcal/mol for FLU@Cu-Al12N12, FLU@Ni-Al12N12, and FLU@Zn-Al12N12, respectively, indicate that FLU chemically adsorbs on the studied nanostructures. The reactivity and conductivity of the system follow a decreasing pattern: FLU@Cu-Al12N12 > FLU@Ni-Al12N12 > FLU@Zn-Al12N12, with a band gap of 0.267 eV, 2.197 eV, and 2.932 eV, respectively. These results suggest that FLU preferably adsorbs on the Al12N12@Cu surface. Natural bond orbital analysis reveals significant transitions in the studied system. Quantum theory of atom in molecule (QTAIM) and Non-covalent interaction (NCI) analysis confirm the nature and strength of interactions. Overall, our findings indicate that the doped surfaces show promise as electronic and biosensor materials for detection of FLU in real-world applications. We encourage experimental researchers to explore the use of (Cu, Ni, and Zn) doped on Aluminum nitride (Al12N12), particularly Al12N12@Cu, for biosensor applications.

9.
RSC Adv ; 13(36): 25391-25407, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37636506

ABSTRACT

Diazomethane (CH2N2) presents a notable hazard as a respiratory irritant, resulting in various adverse effects upon exposure. Consequently, there has been increasing concern in the field of environmental research to develop a sensor material that exhibits heightened sensitivity and conductivity for the detection and adsorption of this gas. Therefore, this study aims to provide a comprehensive analysis of the geometric structure of three systems: CH2N2@MgO (C1), CH2N2@YMgO (CY1), and CH2N2@ZrMgO (CZ1), in addition to pristine MgO nanocages. The investigation involves a theoretical analysis employing the DFT/ωB97XD method at the GenECP/6-311++G(d,p)/SDD level of theory. Notably, the examination of bond lengths within the MgO cage yielded specific values, including Mg15-O4 (1.896 Å), Mg19-O4 (1.952 Å), and Mg23-O4 (1.952 Å), thereby offering valuable insights into the structural properties and interactions with CH2N2 gas. Intriguingly, after the interaction, bond length variations were observed, with CH2N2@MgO exhibiting shorter bonds and CH2N2@YMgO showcasing longer bonds. Meanwhile, CH2N2@ZrMgO displayed shorter bonds, except for a longer bond in Mg19-O4, suggesting increased stability due to shorter bond distances. The study further investigated the electronic properties, revealing changes in the energy gap that influenced electrical conductivity and sensitivity. The energy gap increased for Zr@MgO, CH2N2@MgO, CH2N2@YMgO, and CH2N2@ZrMgO, indicating weak interactions on the MgO surface. Conversely, Y@MgO showed a decrease in energy, suggesting a strong interaction. The pure MgO surface exhibited the ability to donate and accept electrons, resulting in an energy gap of 4.799 eV. Surfaces decorated with yttrium and zirconium exhibited decreased energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), as well as decreased energy gap, indicating increased conductivity and sensitivity. Notably, Zr@MgO had the highest energy gap before CH2N2 adsorption, but C1 exhibited a significantly higher energy gap after adsorption, implying increased conductivity and sensitivity. The study also examined the density of states, demonstrating significant variations in the electronic properties of MgO and its decorated surfaces due to CH2N2 adsorption. Moreover, various analysis techniques were employed, including natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), and noncovalent interaction (NCI) analysis, which provided insights into bonding, charge density, and intermolecular interactions. The findings contribute to a deeper understanding of the sensing mechanisms of CH2N2 gas on nanocage surfaces, shedding light on adsorption energy, conductivity, and recovery time. These results hold significance for gas-sensing applications and provide a basis for further exploration and development in this field.

10.
Heliyon ; 9(7): e18067, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483726

ABSTRACT

Inflammation, a characteristic physiological response to infections and tissue damage, commences with processes involving tissue repair and pathogen elimination, contributing to the restoration of homeostasis at affected sites. Hence, this study presents a comprehensive analysis addressing diverse aspects associated with this phenomenon. The investigation encompasses the synthesis, spectral characterizations (FT-IR, 1H NMR, and 13C NMR), and molecular modeling of p-phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF), a potent agent in promoting inflammation. To explore the reactivity, bonding nature, and spectroscopy, as well as perform molecular docking for in-silico biological evaluation, density functional theory (DFT) utilizing the def2svp/B3LYP-D3BJ method was employed. The results reveal significant biological activity of the tested compound in relation to anti-inflammatory proteins, specifically 6JD8, 5TKB, and 4CYF. Notably, upon interaction between PPHF and 6JD8, a binding affinity of -4.5 kcal/mol was observed. Likewise, the interaction with 5TKB demonstrated an affinity of -7.8 kcal/mol. Furthermore, a bonding affinity of -8.1 kcal/mol was observed for the interaction with 4CYF. Importantly, these values closely correspond to those obtained from the interaction between the proteins and the standard drug ibuprofen (IBF), which exhibited binding affinities of -5.9 kcal/mol, -7.0 kcal/mol, and -6.1 kcal/mol, respectively. Thus, these results provide compelling evidence affirming the tremendous potential of p-phenylenediamine-phenylhydrazine-formaldehyde (PPHF) as a highly promising anti-inflammatory agent, owing to the presence of nitrogen-a heteroatom within the compound.

11.
J Biomol Struct Dyn ; : 1-23, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37504959

ABSTRACT

Owing to the significant gap in the knowledge and understanding of the mechanisms of antimicrobial action and the development of resistance, the optimization of antimicrobial therapies therefore becomes a necessity. It is on this note, that this study seeks to both experimentally and theoretically investigate the antimicrobial efficiency of two synthesized compounds namely; 1-((4-methoxyphenyl) (morpholino)methyl)thiourea (MR1) and diethyl 4-(4-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate (HRC). Utilizing the density functional theory (DFT), the compounds were optimized at ωB97XD/6-31++G(2d, 2p) level of theory. This provided a clear explanation for their distinct reactivity and stability potentials. More so, the natural bond orbital (NBO) analysis confirmed strong intra and intermolecular interactions, which agreed with the calculated reactivity parameters and density of states (DOS). Upon assessing the antimicrobial efficacy of the synthesized compounds, it was found that they exhibited lower activity against Enterobacter and A. niger, but considerable activity against Moraxella. In contrast, they showed higher activity against B. subtilis and Trichophyton, indicating that the compounds are more effective against gram-positive bacteria than gram-negative ones. Hence, it can be asserted that the synthesized compounds have superior antifungal action than antibacterial activity. A fascinating aspect of the data is that they show interactions that are incredibly insightful, totally correlating with the simulations of both molecular docking and molecular dynamics. Therefore, the alignment between experimental findings and computational simulations strengthens the validity of the study's conclusions, emphasizing the significance of the synthesized compounds in the context of optimizing antimicrobial therapies.Communicated by Ramaswamy H. Sarma.

12.
Sci Rep ; 13(1): 10470, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380664

ABSTRACT

Owing to the fact that the use of 2,2-dichlorovinyldimethylphosphate (DDVP) as an agrochemical has become a matter of concern due to its persistence and potential harm to the environment and human health. Detecting and addressing DDVP contamination is crucial to protect human health and mitigate ecological impacts. Hence, this study focuses on harnessing the properties of fullerene (C60) carbon materials, known for their biological activities and high importance, to develop an efficient sensor for DDVP. Additionally, the sensor's performance is enhanced by doping it with gallium (Ga) and indium (In) metals to investigate the sensing and trapping capabilities of DDVP molecules. The detection of DDVP is carefully examined using first-principles density functional theory (DFT) at the Def2svp/B3LYP-GD3(BJ) level of theory, specifically analyzing the adsorption of DDVP at the chlorine (Cl) and oxygen (O) sites. The adsorption energies at the Cl site were determined as - 57.894 kJ/mol, - 78.107 kJ/mol, and - 99.901 kJ/mol for Cl_DDVP@C60, Cl_DDVP@Ga@C60, and Cl_DDVP@In@C60 interactions, respectively. At the O site, the adsorption energies were found to be - 54.400 kJ/mol, - 114.060 kJ/mol, and - 114.056 kJ/mol for O_DDVP@C60, O_DDVP@Ga@C60, and O_DDVP@In@C60, respectively. The adsorption energy analysis highlights the chemisorption strength between the surfaces and the DDVP molecule at the Cl and O sites of adsorption, indicating that the O adsorption site exhibits higher adsorption energy, which is more favorable according to the thermodynamics analysis. Thermodynamic parameters (∆H and ∆G) obtained from this adsorption site suggest considerable stability and indicate a spontaneous reaction in the order O_DDVP@Ga@C60 > O_DDVP@In@C60 > O_DDVP@C60. These findings demonstrate that the metal-decorated surfaces adsorbed on the oxygen (O) site of the biomolecule offer high sensitivity for detecting the organophosphate molecule DDVP.

13.
Article in English | MEDLINE | ID: mdl-37129743

ABSTRACT

Several phytochemicals with potential for bioactivity can be found in Polygonum minus (PM). The goal of this investigation was to establish the minimally toxic dose of PM for pharmaceutical use. To explain the stability and reactivity of the compounds under study, the lowest unoccupied molecular orbital (LUMO), the highest occupied molecular orbital (HOMO), and the natural bond orbital were all combined. Additionally, the cytotoxicity of the aqueous and ethanolic extract of PM on the (Hs888Lu) cell line was determined using the MTS Assay Kit (cell proliferation) (colorimetric). The hematological, hepatic, and renal functions were examined during the acute toxicity test on Sprague Dawley rats. SwissADME and ADMET were used to investigate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the chemicals isolated from PM, including gallic acid, quercetin, rutin, and coumaric acid (PMCs). Molecular docking was used to examine the inhibitory effect against human H+/K+ ATPase, cyclooxygenase-2, and acetylcholinesterase. The outcomes indicated that neither the aqueous nor the ethanolic extract of PM is harmful. The development of plant-based medicine was made possible by the phenolic chemicals, primarily quercetin and rutin, which exhibit a considerable binding affinity to human H+/K+ ATPase, cyclooxygenase-2, and acetylcholinesterase.

14.
Comput Biol Med ; 161: 106934, 2023 07.
Article in English | MEDLINE | ID: mdl-37257404

ABSTRACT

Similar to the more well-known carbon nanotubes, gallium nitride nanotubes (GaNNT) are among the materials that scientists have found to be extremely helpful in transporting drugs and to provide significant potential for multi-modal medical therapies. Here, the potential of Cu, Ag, and Au-doped GaNNT for smart delivery of the anticancer medication hydroxyurea (HU) was extensively investigated employing quantum chemical analysis and density functional theory (DFT) computation at the B3LYP-GD3BJ/def2-SVP level of theory. The systematic approach used in this study entails examining the exo (outside)-and endo (inside) loading of HU utilizing the investigated nanotubes in order to understand the adsorption, sensing processes, bonding types, and thermodynamic properties. Results of the HOMO-LUMO studies show that metal-doped GaNNTs with the hydroxyurea (HU) at the endo - interaction of the drug of the nanotube produced more reduced energy gaps (0.911-2.039 eV) compared with metal-doped GaNNTs complexes at the outside - interaction of the drug on the nanotube (2.25-3.22 eV) and as such reveal their suitability for use as drug delivery materials. As observed in the endo-interaction of HU adsorptions in the tubes, HU_endo_Au@GaNNT possessed the highest adsorption energy values of -118.716 kcal/mol which shows the most chemisorption between the surfaces and the adsorbate while for HU_exo_Ag@GaNNT is -97.431 kcal/mol for the highest exo-interactions. These results suggest that HU drug interacted inside the Ag, Au, and Cu doped GaNNT will be very proficient as a carrier of the HU drug into bio systems. These results are along with visual studies of weak interactions, thermodynamics, sensor, and drug release mechanisms suggest strongly the endo-encapsulation of HU as the best mode for smart drug delivery.


Subject(s)
Antineoplastic Agents , Gallium , Nanotubes, Carbon , Hydroxyurea , Nanotubes, Carbon/chemistry , Gallium/chemistry
15.
ACS Omega ; 8(11): 10006-10021, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969422

ABSTRACT

Theoretical studies on the adsorption, sensibility, and reactivity of a boron nitride nanocage decorated with Au, Cu, Ni, Os, Pt, and Zn metals as a biosensor material were carried out for the adsorption of carboplatin by applying the density functional theory computation at the B3LYP-GD3BJ/def2svp level of theory. All the optimized structures, as well as the calculations as regards the studied objective including electronic properties, geometry optimization parameters, adsorption energy studies, natural bond orbital analysis, topology studies, sensor mechanistic parameters, and thermodynamic properties (ΔG and ΔH), were investigated herein. As a result, the noticeable change in the energy gap of the studied surfaces when interacting with carboplatin accounted for the surfaces' reactivity, stability, conductivity, work function, and overall adsorption ability, implying that the studied decorated surfaces are good sensor materials for sensing carboplatin. Furthermore, the negative adsorption energies obtained for interacting surfaces decorated with Cu, Ni, Os, and Zn suggest that the surface has a superior ability to sense carboplatin as chemisorption was seen. Substantially, the geometric short adsorption bond length after adsorption, thermodynamically spontaneous reactions, and acceptable sensor mechanism results demonstrate that the investigated surfaces have strong sensing characteristics for sensing carboplatin.

16.
ACS Omega ; 8(11): 9861-9872, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969463

ABSTRACT

Theoretical examination of hydroxyurea adsorption capabilities toward the cyclodextrin surface for proper drug delivery systems was carried out utilizing DFT simulations. The study aims to assess the efficacy of doped cyclodextrin (doped with boron, nitrogen, phosphorus, and sulfur atoms) in increasing its stability and efficiency in intermolecular interactions, hence facilitating optimal drug delivery. The adsorption energies were found to follow a decreasing order of B@ACD-HU>N@ACD-HU>P@ACD-HU>S@ACD-HU with energies of -0.046, -0.0326, -0.015, and 0.944 kcal/mol, respectively. The S@ACD-HU complex, unlike previous systems, had a physical adsorption energy. The N@ACD-HU and B@ACD-HU complexes had the shortest bond lengths of 1.42 Å (N122-C15) and 1.54 Å (B126-C15), respectively. The HOMO and LUMO values were also high in identical systems, -6.367 and -2.918 eV (B@ACD-HU) and -6.278 and -1.736 eV (N@ACD-HU), respectively, confirming no chemical interaction. The N@ACD-HU has the largest energy gap of 4.54 eV. For the QTAIM analysis and plots, the maximum electron density and ellipticity index were detected in B@ACD-HU, 0.600 au (H70-N129) and 0.8685 au (H70-N129), respectively, but N@ACD-HU exhibited a high Laplacian energy of 0.7524 a.u (H133-N122). The fragments' TDOS, OPDOS, and PDOS exhibited a strong bond interaction of greater than 1, and they had different Fermi levels, with the highest value of -8.16 eV in the N@ACD-HU complex. Finally, the NCI analysis revealed that the complexes were noncovalent. According to the literature, the van der Waals form of interactions is used in the intermolecular forces of cyclodextrin cavities. The B@ACD-HU and N@ACD-HU systems were more greenish in color with no spatial interaction. These two systems have outperformed other complexes in intermolecular interactions, resulting in more efficient drug delivery. They had the highest negative adsorption energies, the shortest bond length, the highest HOMO/LUMO energies, the highest energy gap, the highest stabilization energy, the strongest bonding effect, the highest electron density, the highest ellipticity index, and a strong van der Waals interaction that binds the drug and the surface together.

17.
ACS Appl Bio Mater ; 6(3): 1146-1160, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36802290

ABSTRACT

In view of the research-substantiated comparative efficiency of nontoxic and bioavailable nanomaterials synergic with human systems for drug delivery, this work was aimed at studying the comparative efficiency of transition metal (Au, Os, and Pt)-decorated B12N12 nanocages in the adsorption of fluorouracil (5Fu), an antimetabolite-classed anticarcinogen administered for cancers of the breast, colon, rectum, and cervix. Three different metal-decorated nanocages interacted with 5Fu drug at the oxygen (O) and fluorine (F) sites, resulting in six adsorbent-adsorbate systems whose reactivity and sensitivity were investigated using density functional theory computation at the B3LYP/def2TZVP level of theory with special emphasis on the structural geometry, electronic, and topology analysis as well as the thermodynamic properties of the systems. While the electronic studies predicted Os@F as having the lowest and most favorable Egp and Ead of 1.3306 eV and -11.9 kcal/mol, respectively, the thermodynamic evaluation showed Pt@F to have the most favorable thermal energy (E), heat capacity (Cp), and entropy (ΔS) values as well as negative ΔH and ΔG while the adsorption studies showed that the greatest degree of chemisorption with Ead magnitude of -204.5023 kcal/mol was observed in energies ranging from -12.0 to 138.4 kcal/mol with Os@F and Au@F at the lower and upper borders. The quantum theory of atoms in molecules results show that the six systems had noncovalent interactions as well as a certain degree of partial covalency but none showed covalent interaction while the noncovalent interaction analysis corroborated this by showing that the six systems had favorable interactions, though of varying degrees, with very little trace of steric hindrance or electrostatic interactions. Overall, the study showed that notwithstanding the good performance of the six adsorbent systems considered, the Pt@F and Os@F showed the most favorable potential for the delivery of 5Fu.


Subject(s)
Fluorouracil , Nanostructures , Humans , Fluorouracil/therapeutic use , Thermodynamics , Nanostructures/therapeutic use , Adsorption , Drug Delivery Systems
18.
Heliyon ; 9(1): e12599, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691540

ABSTRACT

Toxicity in drug includes target toxicity, immune hypersensitivity and off target toxicity. Recently, advances in nanotechnology in the areas of drug delivery have help reduce toxicity and enhance drug solubility and deliver drugs to target sites more efficiently. In this study, we present a novel heteroatom functionalized quantum dot (QD-NBC and QD-NBS) as an effective drug delivery system for isoniazid. The said QD has been computationally modeled to assess its effectiveness in delivering isoniazid to desired target. Density functional theory (DFT) calculations were performed on the QD at the B3LYP/6-311+G(d, p) level to assess its stability through the natural bond orbital (NBO) calculations, and frontier molecular orbital (FMO) before and after interaction with isoniazid drug to understand any change in molecular behavior of the surface. Appropriate intermolecular interactions between the QD and the drug were computed through the Quantum theory of atoms in molecules (QTAIM) and Non-covalent interaction to assess the various binding mechanism and possible interactions resulting to the effective delivery of the drug target. To understand and accurately appraise the binding energy of adsorption, DFT calculations were performed with different functionals (B3LYP, CAM-B3LYP, PBEPBE, GD3BJ & WB97XD/6-311+G (d, p)). The results from DFT calculations point the functionalized QDs to be stable with appreciable energy gap suitable for delivery purposes. The adsorption energy of the drug target with the QD is in the range of -24.73 to 33.75 kcal/mol which indicates substantial interaction of the drug with the QD surface. This absorption energy is comparable with several reported literature and thus prompt the suitability of the surface for isoniazid delivery.

19.
J Biomol Struct Dyn ; 41(19): 10136-10160, 2023 11.
Article in English | MEDLINE | ID: mdl-36519503

ABSTRACT

In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Inflammatory Agents , Molecular Dynamics Simulation , Animals , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Anti-Inflammatory Agents/pharmacology , Perception , Mammals
20.
RSC Adv ; 12(40): 25992-26010, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199611

ABSTRACT

2D transition metal dichalcogenide MoS2 monolayer quantum dots (MoS2-QD) and their doped boron (B@MoS2-QD), nitrogen (N@MoS2-QD), phosphorus (P@MoS2-QD), and silicon (Si@MoS2-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH3 gas. The results from electronic properties showed that P@MoS2-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS2-QD surface, signifying the preferred chemisorption surface for NH3 detection. The mechanistic studies provided in this study also indicate that the P@MoS2-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS2 dopants, specifically the P@MoS2-QD surface, as a promising candidate for sensors to detect gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...