Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IET Syst Biol ; 2(5): 222-33, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19045818

ABSTRACT

One goal of systems biology is to understand how genome-encoded parts interact to produce quantitative phenotypes. The Alpha Project is a medium-scale, interdisciplinary systems biology effort that aims to achieve this goal by understanding fundamental quantitative behaviours of a prototypic signal transduction pathway, the yeast pheromone response system from Saccharomyces cerevisiae. The Alpha Project distinguishes itself from many other systems biology projects by studying a tightly bounded and well-characterised system that is easily modified by genetic means, and by focusing on deep understanding of a discrete number of important and accessible quantitative behaviours. During the project, the authors have developed tools to measure the appropriate data and develop models at appropriate levels of detail to study a number of these quantitative behaviours. The authors have also developed transportable experimental tools and conceptual frameworks for understanding other signalling systems. In particular, the authors have begun to interpret system behaviours and their underlying molecular mechanisms through the lens of information transmission, a principal function of signalling systems. The Alpha Project demonstrates that interdisciplinary studies that identify key quantitative behaviours and measure important quantities, in the context of well-articulated abstractions of system function and appropriate analytical frameworks, can lead to deeper biological understanding. The authors' experience may provide a productive template for systems biology investigations of other cellular systems.


Subject(s)
Models, Biological , Pheromones/metabolism , Proteome/metabolism , Research/trends , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Computer Simulation , Protein Interaction Mapping/methods
2.
Nucleic Acids Res ; 29(24): 5052-7, 2001 Dec 15.
Article in English | MEDLINE | ID: mdl-11812836

ABSTRACT

During recombination-mediated repair of DNA double-strand breaks, strand transfer proteins must distinguish a homologous repair template from closely related genomic sequences. However, some tolerance by strand transfer proteins for sequence differences is also critical: too much stringency will prevent recombination between different alleles of the same gene, but too much tolerance will lead to illegitimate recombination. We characterized the heterology tolerance of Saccharomyces cerevisiae Rad51 by testing bypass of small heterologous inserts in either the single- or double-stranded substrate of an in vitro strand transfer reaction that models the early steps of homologous recombination. We found that the yeast protein is rather stringent, only tolerating heterologies up to 9 bases long. The efficiency of heterology bypass depends on whether the insert is in the single- or double-stranded substrate, as well as on the location of the insert relative to the end of the double-stranded linear substrate. Rad51 is distinct in that it can catalyze strand transfer in either the 3'-->5' or 5'-->3' direction. We found that bypass of heterology was independent of the polarity of strand transfer, suggesting that the mechanism of 5'-->3' transfer is the same as that of 3'-->5' transfer.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , DNA/genetics , DNA/metabolism , DNA Nucleotidyltransferases/metabolism , DNA Repair , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Rad51 Recombinase , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins , Substrate Specificity
3.
J Mol Biol ; 256(1): 50-65, 1996 Feb 16.
Article in English | MEDLINE | ID: mdl-8609613

ABSTRACT

Members of the resolvase/invertase family of site-specific recombinases require supercoiled substrates containing two recombination sites. To dissect the roles of supercoiling in recombination by the Tn3 and gamma delta resolvases and the phage Mu Gin invertase, we used substrates that provided some but not all of the topological features of the standard substrate. We divided the Tn3 resolvase reaction into two stages, synapsis and postsynapsis. Using structural and functional topological analyses, we verified that the resolvase synaptic complexes with nicked catenanes were recombination intermediates. The requirement for supercoiling was even less stringent for the gamma delta resolvase, which recombined nicked catenanes about half as well as it did supercoiled substrates. Gin recombination of catenanes occurred even if the recombinational enhancer was on a nicked ring, as long as both crossover sites were on a supercoiled ring. Therefore, supercoiling is required at the Gin crossover sites but not at the enhancer. We conclude that solely conformational effects of supercoiling are required for resolvase synapsis and the function of the Gin enhancer, but that a torsional effect, probably double helix unwinding, is needed for Tn3 resolvase postsynapsis and at the Gin recombination sites.


Subject(s)
Bacteriophage mu/genetics , DNA Nucleotidyltransferases/metabolism , DNA Topoisomerases, Type I/genetics , DNA, Superhelical/genetics , DNA, Viral/genetics , Recombination, Genetic , Viral Proteins/genetics , Bacteriophage mu/chemistry , Bacteriophage mu/metabolism , Binding Sites/genetics , DNA Topoisomerases, Type I/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , DNA, Viral/chemistry , DNA, Viral/metabolism , Enhancer Elements, Genetic , Nucleic Acid Conformation , Plasmids/genetics , Substrate Specificity , Transposases , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...