Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Rep ; 10(1): 20030, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208761

ABSTRACT

Differentiation therapy has been recently revisited as a prospective approach in cancer therapy by targeting the aberrant growth, and repairing the differentiation and cell death programs of cancer cells. However, differentiation therapy of solid tumors is a challenging issue and progress in this field is limited. We performed High Throughput Screening (HTS) using a novel dual multiplex assay to discover compounds, which induce differentiation of human colon cancer cells. Here we show that the protein arginine methyl transferase (PRMT) type 1 inhibitor, MS023, is a potent inducer of colon cancer cell differentiation with a large therapeutic window. Differentiation changes in the highly aggressive human colon cancer cell line (HT-29) were proved by proteomic and genomic approaches. Growth of HT-29 xenograft in nude mice was significantly delayed upon MS023 treatment and immunohistochemistry of tumor indicated differentiation changes. These findings may lead to development of clinically effective anti-cancer drugs based on the mechanism of cancer cell differentiation.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cell Differentiation , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Humans , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
J Am Soc Nephrol ; 31(10): 2278-2291, 2020 10.
Article in English | MEDLINE | ID: mdl-32651222

ABSTRACT

BACKGROUND: During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS: Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS: Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS: Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.


Subject(s)
Kidney/embryology , Mesoderm/embryology , Organogenesis/genetics , Urothelium/embryology , Animals , Cell Culture Techniques , Mice , RNA Isoforms , Sequence Analysis, RNA
3.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554962

ABSTRACT

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , Cell Lineage/genetics , Chromatin/metabolism , Demethylation , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice , Protein Binding , RNA, Transfer/metabolism , Transcription Factors/metabolism
4.
BMC Genomics ; 19(1): 419, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29848287

ABSTRACT

BACKGROUND: The main bottleneck for genomic studies of tumors is the limited availability of fresh frozen (FF) samples collected from patients, coupled with comprehensive long-term clinical follow-up. This shortage could be alleviated by using existing large archives of routinely obtained and stored Formalin-Fixed Paraffin-Embedded (FFPE) tissues. However, since these samples are partially degraded, their RNA sequencing is technically challenging. RESULTS: In an effort to establish a reliable and practical procedure, we compared three protocols for RNA sequencing using pairs of FF and FFPE samples, both taken from the same breast tumor. In contrast to previous studies, we compared the expression profiles obtained from the two matched sample types, using the same protocol for both. Three protocols were tested on low initial amounts of RNA, as little as 100 ng, to represent the possibly limited availability of clinical samples. For two of the three protocols tested, poly(A) selection (mRNA-seq) and ribosomal-depletion, the total gene expression profiles of matched FF and FFPE pairs were highly correlated. For both protocols, differential gene expression between two FFPE samples was in agreement with their matched FF samples. Notably, although expression levels of FFPE samples by mRNA-seq were mainly represented by the 3'-end of the transcript, they yielded very similar results to those obtained by ribosomal-depletion protocol, which produces uniform coverage across the transcript. Further, focusing on clinically relevant genes, we showed that the high correlation between expression levels persists at higher resolutions. CONCLUSIONS: Using the poly(A) protocol for FFPE exhibited, unexpectedly, similar efficiency to the ribosomal-depletion protocol, with the latter requiring much higher (2-3 fold) sequencing depth to compensate for the relative low fraction of reads mapped to the transcriptome. The results indicate that standard poly(A)-based RNA sequencing of archived FFPE samples is a reliable and cost-effective alternative for measuring mRNA-seq on FF samples. Expression profiling of FFPE samples by mRNA-seq can facilitate much needed extensive retrospective clinical genomic studies.


Subject(s)
Cryopreservation , Gene Expression Profiling , RNA, Messenger/genetics , Sequence Analysis, RNA , Tissue Fixation/methods , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Humans
5.
Nat Ecol Evol ; 2(2): 306-316, 2018 02.
Article in English | MEDLINE | ID: mdl-29255297

ABSTRACT

The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.


Subject(s)
Animal Distribution , Fishes/physiology , Metagenome , Animals , Coral Reefs , Electron Transport Complex IV/analysis , Fish Proteins/analysis , Fishes/growth & development , Israel , Larva/growth & development , Larva/physiology , Mitochondrial Proteins/analysis , Oceans and Seas , Population Density , Spatio-Temporal Analysis
7.
Nat Protoc ; 10(4): 605-18, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811895

ABSTRACT

4sUDRB-seq separately measures, on a genomic scale, the distinct contributions of transcription elongation speed and rate of RNA polymerase II (Pol II) transition into active elongation (TAE) to the overall mRNA production rate. It uses reversible inhibition of transcription elongation with 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB), combined with a pulse of 4-thiouridine (4sU), to tag newly transcribed RNA. After DRB removal, cells are collected at several time points, and tagged RNA is biotinylated, captured on streptavidin beads and sequenced. 4sUDRB-seq enables the comparison of elongation speeds between different developmental stages or different cell types, and it allows the impact of specific transcription factors on transcription elongation speed versus TAE to be studied. RNA preparation takes ∼4 d to complete, with deep sequencing requiring an additional ∼4-11 d plus 1-3 d for bioinformatics analysis. The experimental protocol requires basic molecular biology skills, whereas data analysis requires knowledge in bioinformatics, particularly MATLAB and the Linux environment.


Subject(s)
Dichlororibofuranosylbenzimidazole/chemistry , RNA Polymerase II/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Analysis, RNA/methods , Thiouridine/metabolism , Transcription Elongation, Genetic , Biotin/chemistry , Genome , HeLa Cells , Humans , RNA/isolation & purification , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Reproducibility of Results , Sequence Analysis, RNA/instrumentation , Streptavidin/chemistry , Thiouridine/chemistry
8.
Genome Biol ; 15(5): R69, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24887486

ABSTRACT

Although transcriptional elongation by RNA polymerase II is coupled with many RNA-related processes, genomewide elongation rates remain unknown. We describe a method, called 4sUDRB-seq, based on reversible inhibition of transcription elongation coupled with tagging newly transcribed RNA with 4-thiouridine and high throughput sequencing to measure simultaneously with high confidence genome-wide transcription elongation rates in cells. We find that most genes are transcribed at about 3.5 Kb/min, with elongation rates varying between 2 Kb/min and 6 Kb/min. 4sUDRB-seq can facilitate genomewide exploration of the involvement of specific elongation factors in transcription and the contribution of deregulated transcription elongation to various pathologies.


Subject(s)
Dichlororibofuranosylbenzimidazole/pharmacology , RNA Polymerase II/metabolism , Thiouridine/metabolism , Transcription Elongation, Genetic , Genome, Human , HeLa Cells , Humans , Sequence Analysis, RNA/methods
9.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24172903

ABSTRACT

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cellular Reprogramming , Chimera/embryology , Chromatin/metabolism , DNA Methylation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Female , Germ Layers/cytology , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Mice , Morula/cytology , Organogenesis , Promoter Regions, Genetic/genetics , Regenerative Medicine , Reproducibility of Results , Signal Transduction , X Chromosome Inactivation
10.
J Mol Diagn ; 14(5): 510-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22749746

ABSTRACT

For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non-small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non-small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.


Subject(s)
Lung Neoplasms/classification , Lung Neoplasms/diagnosis , MicroRNAs/genetics , Molecular Diagnostic Techniques/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Sensitivity and Specificity
11.
J Mol Diagn ; 12(5): 687-96, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20595629

ABSTRACT

Subtypes of renal tumors have different genetic backgrounds, prognoses, and responses to surgical and medical treatment, and their differential diagnosis is a frequent challenge for pathologists. New biomarkers can help improve the diagnosis and hence the management of renal cancer patients. We extracted RNA from 71 formalin-fixed paraffin-embedded (FFPE) renal tumor samples and measured expression of more than 900 microRNAs using custom microarrays. Clustering revealed similarity in microRNA expression between oncocytoma and chromophobe subtypes as well as between conventional (clear-cell) and papillary tumors. By basing a classification algorithm on this structure, we followed inherent biological correlations and could achieve accurate classification using few microRNAs markers. We defined a two-step decision-tree classifier that uses expression levels of six microRNAs: the first step uses expression levels of hsa-miR-210 and hsa-miR-221 to distinguish between the two pairs of subtypes; the second step uses either hsa-miR-200c with hsa-miR-139-5p to identify oncocytoma from chromophobe, or hsa-miR-31 with hsa-miR-126 to identify conventional from papillary tumors. The classifier was tested on an independent set of FFPE tumor samples from 54 additional patients, and identified correctly 93% of the cases. Validation on qRT-PCR platform demonstrated high correlation with microarray results and accurate classification. MicroRNA expression profiling is a very effective molecular bioassay for classification of renal tumors and can offer a quantitative standardized complement to current methods of tumor classification.


Subject(s)
Kidney Neoplasms/classification , MicroRNAs/genetics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
12.
Mod Pathol ; 23(6): 814-23, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20348879

ABSTRACT

Identification of the tissue of origin of a tumor is vital to its management. Previous studies showed tissue-specific expression patterns of microRNA and suggested that microRNA profiling would be useful in addressing this diagnostic challenge. MicroRNAs are well preserved in formalin-fixed, paraffin-embedded (FFPE) samples, further supporting this approach. To develop a standardized assay for identification of the tissue origin of FFPE tumor samples, we used microarray data from 504 tumor samples to select a shortlist of 104 microRNA biomarker candidates. These 104 microRNAs were profiled by proprietary quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) on 356 FFPE tumor samples. A total of 48 microRNAs were chosen from this list of candidates and used to train a classifier. We developed a clinical test for the identification of the tumor tissue of origin based on a standardized protocol and defined the classification criteria. The test measures expression levels of 48 microRNAs by qRT-PCR, and predicts the tissue of origin among 25 possible classes, corresponding to 17 distinct tissues and organs. The biologically motivated classifier combines the predictions generated by a binary decision tree and K-nearest neighbors (KNN). The classifier was validated on an independent, blinded set of 204 FFPE tumor samples, including nearly 100 metastatic tumor samples. The test predictions correctly identified the reference diagnosis in 85% of the cases. In 66% of the cases the two algorithm predictions (tree and KNN) agreed on a single-tissue origin, which was identical to the reference diagnosis in 90% of cases. Thus, a qRT-PCR test based on the expression profile of 48 tissue-specific microRNAs allows accurate identification of the tumor tissue of origin.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Testing/methods , MicroRNAs/analysis , Neoplasms, Unknown Primary/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Algorithms , Decision Trees , Germany , Humans , Israel , Neoplasms, Unknown Primary/genetics , Oligonucleotide Array Sequence Analysis , Predictive Value of Tests , Reproducibility of Results , Sensitivity and Specificity , United States
13.
Cancer Res ; 70(5): 1916-24, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20160038

ABSTRACT

The inability to forecast outcomes for malignant mesothelioma prevents clinicians from providing aggressive multimodality therapy to the most appropriate individuals who may benefit from such an approach. We investigated whether specific microRNAs (miR) could segregate a largely surgically treated group of mesotheliomas into good or bad prognosis categories. A training set of 44 and a test set of 98 mesothelioma tumors were analyzed by a custom miR platform, along with 9 mesothelioma cell lines and 3 normal mesothelial lines. Functional implications as well as downstream targets of potential prognostic miRs were investigated. In both the training and test sets, hsa-miR-29c* was an independent prognostic factor for time to progression as well as survival after surgical cytoreduction. The miR was expressed at higher levels in epithelial mesothelioma, and the level of this miR could segregate patients with this histology into groups with differing prognosis. Increased expression of hsa-miR-29c* predicted a more favorable prognosis, and overexpression of the miR in mesothelioma cell lines resulted in significantly decreased proliferation, migration, invasion, and colony formation. Moreover, major epigenetic regulation of mesothelioma is mediated by hsa-miR-29c* and was shown through downregulation of DNA methyltransferases as well as upregulation of demethylating genes. A single miR has the potential to be a prognostic biomarker in mesothelioma, and validation of these findings as well as investigation of its downstream targets may give insight for potential therapies in the future.


Subject(s)
Mesothelioma/genetics , MicroRNAs/analysis , Pleural Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Asbestos/poisoning , Cell Line, Tumor , Female , Humans , Male , Mesothelioma/etiology , MicroRNAs/biosynthesis , MicroRNAs/genetics , Middle Aged , Pleural Neoplasms/etiology , Prognosis , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Transfection
14.
PLoS One ; 3(9): e3148, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18773077

ABSTRACT

BACKGROUND: Circulating nucleic acids (CNAs) offer unique opportunities for early diagnosis of clinical conditions. Here we show that microRNAs, a family of small non-coding regulatory RNAs involved in human development and pathology, are present in bodily fluids and represent new effective biomarkers. METHODS AND RESULTS: After developing protocols for extracting and quantifying microRNAs in serum and other body fluids, the serum microRNA profiles of several healthy individuals were determined and found to be similar, validating the robustness of our methods. To address the possibility that the abundance of specific microRNAs might change during physiological or pathological conditions, serum microRNA levels in pregnant and non pregnant women were compared. In sera from pregnant women, microRNAs associated with human placenta were significantly elevated and their levels correlated with pregnancy stage. CONCLUSIONS AND SIGNIFICANCE: Considering the central role of microRNAs in development and disease, our results highlight the medically relevant potential of determining microRNA levels in serum and other body fluids. Thus, microRNAs are a new class of CNAs that promise to serve as useful clinical biomarkers.


Subject(s)
Biomarkers/metabolism , MicroRNAs/genetics , Biomarkers, Tumor , Cell-Free System , DNA/blood , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/physiology , Pregnancy , Pregnancy Trimesters , RNA/blood , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
15.
Mol Microbiol ; 50(1): 129-43, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14507369

ABSTRACT

The bacterial tRNALys-specific anticodon nuclease is known as a phage T4 exclusion system. In the uninfected host cell anticodon nuclease is kept latent due to the association of its core protein PrrC with the DNA restriction-modification endonuclease EcoprrI. Stp, the T4-encoded peptide inhibitor of EcoprrI activates the latent enzyme. Previous in vitro work indicated that the activation by Stp is sensitive to DNase and requires added nucleotides. Biochemical and mutational data reported here suggest that Stp activates the latent holoenzyme when its EcoprrI component is tethered to a cognate DNA substrate. Moreover, the activation is driven by GTP hydrolysis, possibly mediated by the NTPase domain of PrrC. The data also reveal that Stp can be replaced as the activator of latent anticodon nuclease by certain pyrimidine nucleotides, the most potent of which is dTTP. The activation by dTTP likewise requires an EcoprrI DNA substrate and GTP hydrolysis but involves a different form of the latent holoenzyme/DNA complex. Moreover, whereas Stp relays its activating effect through EcoprrI, dTTP targets PrrC. The activation of the latent enzyme by a normal cell constituent hints that anticodon nuclease plays additional roles, other than warding off phage T4 infection.


Subject(s)
Bacteriophage T4/metabolism , Enzyme Activators/metabolism , Escherichia coli/enzymology , Pyrimidine Nucleotides/metabolism , Ribonucleases/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , DNA, Bacterial/metabolism , Enzyme Activation , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Genes, Bacterial , Genetic Complementation Test , Guanosine Triphosphate/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , RNA, Transfer, Amino Acyl/metabolism , Ribonucleases/chemistry , Ribonucleases/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Thymine Nucleotides/metabolism , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...